Suppr超能文献

基于自适应螺旋飞行和多策略融合的狐猴优化算法

FOX Optimization Algorithm Based on Adaptive Spiral Flight and Multi-Strategy Fusion.

作者信息

Zhang Zheng, Wang Xiangkun, Cao Li

机构信息

School of Information Engineering, Wenzhou Business College, Wenzhou 325035, China.

School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China.

出版信息

Biomimetics (Basel). 2024 Aug 30;9(9):524. doi: 10.3390/biomimetics9090524.

Abstract

Adaptive spiral flight and multi-strategy fusion are the foundations of a new FOX optimization algorithm that aims to address the drawbacks of the original method, including weak starting individual ergodicity, low diversity, and an easy way to slip into local optimum. In order to enhance the population, inertial weight is added along with Levy flight and variable spiral strategy once the population is initialized using a tent chaotic map. To begin the process of implementing the method, the fox population position is initialized using the created Tent chaotic map in order to provide more ergodic and varied individual beginning locations. To improve the quality of the solution, the inertial weight is added in the second place. The fox random walk mode is then updated using a variable spiral position updating approach. Subsequently, the algorithm's global and local searches are balanced, and the Levy flying method and greedy approach are incorporated to update the fox location. The enhanced FOX optimization technique is then thoroughly contrasted with various swarm intelligence algorithms using engineering application optimization issues and the CEC2017 benchmark test functions. According to the simulation findings, there have been notable advancements in the convergence speed, accuracy, and stability, as well as the jumping out of the local optimum, of the upgraded FOX optimization algorithm.

摘要

自适应螺旋飞行和多策略融合是一种新型狐狸优化算法的基础,该算法旨在解决原始方法的缺点,包括初始个体遍历性弱、多样性低以及容易陷入局部最优。为了增强种群,在使用帐篷混沌映射初始化种群后,加入惯性权重以及莱维飞行和可变螺旋策略。为了开始实施该方法的过程,使用创建的帐篷混沌映射初始化狐狸种群位置,以便提供更多遍历性和多样化的个体起始位置。其次,为了提高解的质量,加入惯性权重。然后使用可变螺旋位置更新方法更新狐狸随机游走模式。随后,平衡算法的全局和局部搜索,并结合莱维飞行方法和贪婪方法来更新狐狸位置。然后,使用工程应用优化问题和CEC2017基准测试函数,将改进后的狐狸优化技术与各种群智能算法进行全面对比。根据仿真结果,升级后的狐狸优化算法在收敛速度、准确性和稳定性以及跳出局部最优方面都有显著进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fd9/11429275/1c2e1dfb8b6b/biomimetics-09-00524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验