文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多策略改进的哈里斯鹰优化算法及其在路径规划中的应用

Multi-Strategy Improved Harris Hawk Optimization Algorithm and Its Application in Path Planning.

作者信息

Tang Chaoli, Li Wenyan, Han Tao, Yu Lu, Cui Tao

机构信息

School of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China.

出版信息

Biomimetics (Basel). 2024 Sep 12;9(9):552. doi: 10.3390/biomimetics9090552.


DOI:10.3390/biomimetics9090552
PMID:39329574
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11430035/
Abstract

Path planning is a key problem in the autonomous navigation of mobile robots and a research hotspot in the field of robotics. Harris Hawk Optimization (HHO) faces challenges such as low solution accuracy and a slow convergence speed, and it easy falls into local optimization in path planning applications. For this reason, this paper proposes a Multi-strategy Improved Harris Hawk Optimization (MIHHO) algorithm. First, the double adaptive weight strategy is used to enhance the search capability of the algorithm to significantly improve the convergence accuracy and speed of path planning; second, the Dimension Learning-based Hunting (DLH) search strategy is introduced to effectively balance exploration and exploitation while maintaining the diversity of the population; and then, Position update strategy based on Dung Beetle Optimizer algorithm is proposed to reduce the algorithm's possibility of falling into local optimal solutions during path planning. The experimental results of the comparison of the test functions show that the MIHHO algorithm is ranked first in terms of performance, with significant improvements in optimization seeking ability, convergence speed, and stability. Finally, MIHHO is applied to robot path planning, and the test results show that in four environments with different complexities and scales, the average path lengths of MIHHO are improved by 1.99%, 14.45%, 4.52%, and 9.19% compared to HHO, respectively. These results indicate that MIHHO has significant performance advantages in path planning tasks and helps to improve the path planning efficiency and accuracy of mobile robots.

摘要

路径规划是移动机器人自主导航中的关键问题,也是机器人领域的研究热点。哈里斯鹰优化算法(HHO)在路径规划应用中面临求解精度低、收敛速度慢等挑战,且容易陷入局部最优。为此,本文提出一种多策略改进哈里斯鹰优化算法(MIHHO)。首先,采用双自适应权重策略增强算法的搜索能力,显著提高路径规划的收敛精度和速度;其次,引入基于维度学习的狩猎(DLH)搜索策略,在保持种群多样性的同时有效平衡探索和利用能力;然后,提出基于蜣螂优化算法的位置更新策略,降低算法在路径规划过程中陷入局部最优解的可能性。测试函数对比实验结果表明,MIHHO算法在性能方面排名第一,在寻优能力、收敛速度和稳定性上有显著提升。最后,将MIHHO应用于机器人路径规划,测试结果表明,在四种不同复杂度和规模的环境中,与HHO相比,MIHHO的平均路径长度分别提高了1.99%、14.45%、4.52%和9.19%。这些结果表明,MIHHO在路径规划任务中具有显著的性能优势,有助于提高移动机器人的路径规划效率和精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/4c4a34f7f9c0/biomimetics-09-00552-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/df389820075f/biomimetics-09-00552-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/fe971cd198c6/biomimetics-09-00552-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/e1b257bb7df2/biomimetics-09-00552-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/1b80993f9630/biomimetics-09-00552-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/9c3eb8bef50e/biomimetics-09-00552-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/6470c834f495/biomimetics-09-00552-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/4d77e6250660/biomimetics-09-00552-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/88e79c4c0545/biomimetics-09-00552-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/1fa285b35e70/biomimetics-09-00552-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/79e5bcb2f1fa/biomimetics-09-00552-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/4c4a34f7f9c0/biomimetics-09-00552-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/df389820075f/biomimetics-09-00552-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/fe971cd198c6/biomimetics-09-00552-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/e1b257bb7df2/biomimetics-09-00552-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/1b80993f9630/biomimetics-09-00552-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/9c3eb8bef50e/biomimetics-09-00552-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/6470c834f495/biomimetics-09-00552-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/4d77e6250660/biomimetics-09-00552-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/88e79c4c0545/biomimetics-09-00552-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/1fa285b35e70/biomimetics-09-00552-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/79e5bcb2f1fa/biomimetics-09-00552-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee5d/11430035/4c4a34f7f9c0/biomimetics-09-00552-g011.jpg

相似文献

[1]
Multi-Strategy Improved Harris Hawk Optimization Algorithm and Its Application in Path Planning.

Biomimetics (Basel). 2024-9-12

[2]
A path planning method using modified harris hawks optimization algorithm for mobile robots.

PeerJ Comput Sci. 2023-7-18

[3]
UAV Path Planning Algorithm Based on Improved Harris Hawks Optimization.

Sensors (Basel). 2022-7-13

[4]
Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots.

Biomimetics (Basel). 2024-6-11

[5]
An Improved Harris Hawks Optimization Algorithm and Its Application in Grid Map Path Planning.

Biomimetics (Basel). 2023-9-15

[6]
Indoor Robot Path Planning Using an Improved Whale Optimization Algorithm.

Sensors (Basel). 2023-4-14

[7]
Multi-Strategy Improved Dung Beetle Optimization Algorithm and Its Applications.

Biomimetics (Basel). 2024-5-13

[8]
A multi-strategy improved rime optimization algorithm for three-dimensional USV path planning and global optimization.

Sci Rep. 2024-6-1

[9]
Path Planning for Unmanned Delivery Robots Based on EWB-GWO Algorithm.

Sensors (Basel). 2023-2-7

[10]
Multi-UAV Path Planning Algorithm Based on BINN-HHO.

Sensors (Basel). 2022-12-13

引用本文的文献

[1]
UAV Path Planning: A Dual-Population Cooperative Honey Badger Algorithm for Staged Fusion of Multiple Differential Evolutionary Strategies.

Biomimetics (Basel). 2025-3-10

本文引用的文献

[1]
A Multi-Objective Optimization Problem Solving Method Based on Improved Golden Jackal Optimization Algorithm and Its Application.

Biomimetics (Basel). 2024-4-28

[2]
Hybrid Whale Optimization with a Firefly Algorithm for Function Optimization and Mobile Robot Path Planning.

Biomimetics (Basel). 2024-1-8

[3]
An improved chaos sparrow search algorithm for UAV path planning.

Sci Rep. 2024-1-3

[4]
An Improved Harris Hawks Optimization Algorithm and Its Application in Grid Map Path Planning.

Biomimetics (Basel). 2023-9-15

[5]
A path planning method using modified harris hawks optimization algorithm for mobile robots.

PeerJ Comput Sci. 2023-7-18

[6]
Multi-UAV Path Planning Algorithm Based on BINN-HHO.

Sensors (Basel). 2022-12-13

[7]
An Efficient Improved Greedy Harris Hawks Optimizer and Its Application to Feature Selection.

Entropy (Basel). 2022-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索