Tang Chaoli, Li Wenyan, Han Tao, Yu Lu, Cui Tao
School of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China.
Biomimetics (Basel). 2024 Sep 12;9(9):552. doi: 10.3390/biomimetics9090552.
Path planning is a key problem in the autonomous navigation of mobile robots and a research hotspot in the field of robotics. Harris Hawk Optimization (HHO) faces challenges such as low solution accuracy and a slow convergence speed, and it easy falls into local optimization in path planning applications. For this reason, this paper proposes a Multi-strategy Improved Harris Hawk Optimization (MIHHO) algorithm. First, the double adaptive weight strategy is used to enhance the search capability of the algorithm to significantly improve the convergence accuracy and speed of path planning; second, the Dimension Learning-based Hunting (DLH) search strategy is introduced to effectively balance exploration and exploitation while maintaining the diversity of the population; and then, Position update strategy based on Dung Beetle Optimizer algorithm is proposed to reduce the algorithm's possibility of falling into local optimal solutions during path planning. The experimental results of the comparison of the test functions show that the MIHHO algorithm is ranked first in terms of performance, with significant improvements in optimization seeking ability, convergence speed, and stability. Finally, MIHHO is applied to robot path planning, and the test results show that in four environments with different complexities and scales, the average path lengths of MIHHO are improved by 1.99%, 14.45%, 4.52%, and 9.19% compared to HHO, respectively. These results indicate that MIHHO has significant performance advantages in path planning tasks and helps to improve the path planning efficiency and accuracy of mobile robots.
路径规划是移动机器人自主导航中的关键问题,也是机器人领域的研究热点。哈里斯鹰优化算法(HHO)在路径规划应用中面临求解精度低、收敛速度慢等挑战,且容易陷入局部最优。为此,本文提出一种多策略改进哈里斯鹰优化算法(MIHHO)。首先,采用双自适应权重策略增强算法的搜索能力,显著提高路径规划的收敛精度和速度;其次,引入基于维度学习的狩猎(DLH)搜索策略,在保持种群多样性的同时有效平衡探索和利用能力;然后,提出基于蜣螂优化算法的位置更新策略,降低算法在路径规划过程中陷入局部最优解的可能性。测试函数对比实验结果表明,MIHHO算法在性能方面排名第一,在寻优能力、收敛速度和稳定性上有显著提升。最后,将MIHHO应用于机器人路径规划,测试结果表明,在四种不同复杂度和规模的环境中,与HHO相比,MIHHO的平均路径长度分别提高了1.99%、14.45%、4.52%和9.19%。这些结果表明,MIHHO在路径规划任务中具有显著的性能优势,有助于提高移动机器人的路径规划效率和精度。
Biomimetics (Basel). 2024-9-12
PeerJ Comput Sci. 2023-7-18
Sensors (Basel). 2022-7-13
Biomimetics (Basel). 2024-6-11
Biomimetics (Basel). 2023-9-15
Sensors (Basel). 2023-4-14
Biomimetics (Basel). 2024-5-13
Sensors (Basel). 2023-2-7
Sensors (Basel). 2022-12-13
Biomimetics (Basel). 2024-1-8
Sci Rep. 2024-1-3
Biomimetics (Basel). 2023-9-15
PeerJ Comput Sci. 2023-7-18
Sensors (Basel). 2022-12-13
Entropy (Basel). 2022-8-2