Suppr超能文献

基于监测、流行病学和最终结果(SEER)数据库的预测T1和T2期胆囊癌远处转移的机器学习算法

Machine Learning Algorithm for Predicting Distant Metastasis of T1 and T2 Gallbladder Cancer Based on SEER Database.

作者信息

Guo Zhentian, Zhang Zongming, Liu Limin, Zhao Yue, Liu Zhuo, Zhang Chong, Qi Hui, Feng Jinqiu, Yao Peijie, Yuan Haiming

机构信息

Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China.

Key Laboratory of Geriatrics (Hepatobiliary Diseases) of China General Technology Group, Beijing 100073, China.

出版信息

Bioengineering (Basel). 2024 Sep 15;11(9):927. doi: 10.3390/bioengineering11090927.

Abstract

(1) Background: This study seeks to employ a machine learning (ML) algorithm to forecast the risk of distant metastasis (DM) in patients with T1 and T2 gallbladder cancer (GBC); (2) Methods: Data of patients diagnosed with T1 and T2 GBC was obtained from SEER, encompassing the period from 2004 to 2015, were utilized to apply seven ML algorithms. These algorithms were appraised by the area under the receiver operating characteristic curve (AUC) and other metrics; (3) Results: This study involved 4371 patients in total. Out of these patients, 764 (17.4%) cases progressed to develop DM. Utilizing a logistic regression (LR) model to identify independent risk factors for DM of gallbladder cancer (GBC). A nomogram has been developed to forecast DM in early T-stage gallbladder cancer patients. Through the evaluation of different models using relevant indicators, it was discovered that Random Forest (RF) exhibited the most outstanding predictive performance; (4) Conclusions: RF has demonstrated high accuracy in predicting DM in gallbladder cancer patients, assisting clinical physicians in enhancing the accuracy of diagnosis. This can be particularly valuable for improving patient outcomes and optimizing treatment strategies. We employ the RF algorithm to construct the corresponding web calculator.

摘要

(1) 背景:本研究旨在采用机器学习(ML)算法预测T1和T2期胆囊癌(GBC)患者发生远处转移(DM)的风险;(2) 方法:从监测、流行病学和最终结果(SEER)数据库获取2004年至2015年期间诊断为T1和T2期GBC患者的数据,用于应用七种ML算法。这些算法通过受试者操作特征曲线(AUC)下面积和其他指标进行评估;(3) 结果:本研究共纳入4371例患者。其中,764例(17.4%)进展为DM。利用逻辑回归(LR)模型确定胆囊癌(GBC)发生DM的独立危险因素。已开发出一种列线图来预测早期T分期胆囊癌患者发生DM的情况。通过使用相关指标对不同模型进行评估,发现随机森林(RF)表现出最出色的预测性能;(4) 结论:RF在预测胆囊癌患者发生DM方面已显示出较高的准确性,有助于临床医生提高诊断准确性。这对于改善患者预后和优化治疗策略可能特别有价值。我们采用RF算法构建了相应的网络计算器。

相似文献

1
Machine Learning Algorithm for Predicting Distant Metastasis of T1 and T2 Gallbladder Cancer Based on SEER Database.
Bioengineering (Basel). 2024 Sep 15;11(9):927. doi: 10.3390/bioengineering11090927.
2
A Novel Nomogram Predicting Distant Metastasis in T1 and T2 Gallbladder Cancer: A SEER-based Study.
Int J Med Sci. 2020 Jul 2;17(12):1704-1712. doi: 10.7150/ijms.47073. eCollection 2020.
3
Application of machine learning algorithm in predicting distant metastasis of T1 gastric cancer.
Sci Rep. 2023 Apr 7;13(1):5741. doi: 10.1038/s41598-023-31880-6.
4
Machine learning based on SEER database to predict distant metastasis of thyroid cancer.
Endocrine. 2024 Jun;84(3):1040-1050. doi: 10.1007/s12020-023-03657-4. Epub 2023 Dec 29.
5
A machine learning-based model for predicting distant metastasis in patients with rectal cancer.
Front Oncol. 2023 Aug 15;13:1235121. doi: 10.3389/fonc.2023.1235121. eCollection 2023.
6
Machine Learning for Predicting Distant Metastasis of Medullary Thyroid Carcinoma Using the SEER Database.
Int J Endocrinol. 2023 Dec 30;2023:9965578. doi: 10.1155/2023/9965578. eCollection 2023.
8
A Machine Learning Algorithm for Predicting the Risk of Developing to M1b Stage of Patients With Germ Cell Testicular Cancer.
Front Public Health. 2022 Jun 29;10:916513. doi: 10.3389/fpubh.2022.916513. eCollection 2022.
9
Risk factors and prognosis of liver metastasis in gallbladder cancer patients: A SEER-based study.
Front Surg. 2022 Aug 23;9:899896. doi: 10.3389/fsurg.2022.899896. eCollection 2022.
10
A clinical prediction model for distant metastases of pediatric neuroblastoma: an analysis based on the SEER database.
Front Pediatr. 2024 Sep 19;12:1417818. doi: 10.3389/fped.2024.1417818. eCollection 2024.

引用本文的文献

1
A Dual-Branch Residual Network with Attention Mechanisms for Enhanced Classification of Vaginal Lesions in Colposcopic Images.
Bioengineering (Basel). 2024 Nov 22;11(12):1182. doi: 10.3390/bioengineering11121182.

本文引用的文献

1
Machine Learning for Predicting Distant Metastasis of Medullary Thyroid Carcinoma Using the SEER Database.
Int J Endocrinol. 2023 Dec 30;2023:9965578. doi: 10.1155/2023/9965578. eCollection 2023.
2
Construction and validation of the predictive model for gallbladder cancer liver metastasis patients: a SEER-based study.
Eur J Gastroenterol Hepatol. 2024 Jan 1;36(1):129-134. doi: 10.1097/MEG.0000000000002678.
3
Predicting diagnosis and survival of bone metastasis in breast cancer using machine learning.
Sci Rep. 2023 Oct 25;13(1):18301. doi: 10.1038/s41598-023-45438-z.
4
Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma.
J Clin Transl Hepatol. 2023 Oct 28;11(5):1184-1191. doi: 10.14218/JCTH.2022.00077S. Epub 2023 May 17.
6
Application of machine learning techniques in real-world research to predict the risk of liver metastasis in rectal cancer.
Front Oncol. 2022 Dec 20;12:1065468. doi: 10.3389/fonc.2022.1065468. eCollection 2022.
7
Risk factors and prognosis of liver metastasis in gallbladder cancer patients: A SEER-based study.
Front Surg. 2022 Aug 23;9:899896. doi: 10.3389/fsurg.2022.899896. eCollection 2022.
8
Machine Learning Improves Prediction Over Logistic Regression on Resected Colon Cancer Patients.
J Surg Res. 2022 Jul;275:181-193. doi: 10.1016/j.jss.2022.01.012. Epub 2022 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验