Guo Zhentian, Zhang Zongming, Liu Limin, Zhao Yue, Liu Zhuo, Zhang Chong, Qi Hui, Feng Jinqiu, Yao Peijie, Yuan Haiming
Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China.
Key Laboratory of Geriatrics (Hepatobiliary Diseases) of China General Technology Group, Beijing 100073, China.
Bioengineering (Basel). 2024 Sep 15;11(9):927. doi: 10.3390/bioengineering11090927.
(1) Background: This study seeks to employ a machine learning (ML) algorithm to forecast the risk of distant metastasis (DM) in patients with T1 and T2 gallbladder cancer (GBC); (2) Methods: Data of patients diagnosed with T1 and T2 GBC was obtained from SEER, encompassing the period from 2004 to 2015, were utilized to apply seven ML algorithms. These algorithms were appraised by the area under the receiver operating characteristic curve (AUC) and other metrics; (3) Results: This study involved 4371 patients in total. Out of these patients, 764 (17.4%) cases progressed to develop DM. Utilizing a logistic regression (LR) model to identify independent risk factors for DM of gallbladder cancer (GBC). A nomogram has been developed to forecast DM in early T-stage gallbladder cancer patients. Through the evaluation of different models using relevant indicators, it was discovered that Random Forest (RF) exhibited the most outstanding predictive performance; (4) Conclusions: RF has demonstrated high accuracy in predicting DM in gallbladder cancer patients, assisting clinical physicians in enhancing the accuracy of diagnosis. This can be particularly valuable for improving patient outcomes and optimizing treatment strategies. We employ the RF algorithm to construct the corresponding web calculator.
(1) 背景:本研究旨在采用机器学习(ML)算法预测T1和T2期胆囊癌(GBC)患者发生远处转移(DM)的风险;(2) 方法:从监测、流行病学和最终结果(SEER)数据库获取2004年至2015年期间诊断为T1和T2期GBC患者的数据,用于应用七种ML算法。这些算法通过受试者操作特征曲线(AUC)下面积和其他指标进行评估;(3) 结果:本研究共纳入4371例患者。其中,764例(17.4%)进展为DM。利用逻辑回归(LR)模型确定胆囊癌(GBC)发生DM的独立危险因素。已开发出一种列线图来预测早期T分期胆囊癌患者发生DM的情况。通过使用相关指标对不同模型进行评估,发现随机森林(RF)表现出最出色的预测性能;(4) 结论:RF在预测胆囊癌患者发生DM方面已显示出较高的准确性,有助于临床医生提高诊断准确性。这对于改善患者预后和优化治疗策略可能特别有价值。我们采用RF算法构建了相应的网络计算器。