Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.
Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland.
Biosensors (Basel). 2024 Sep 6;14(9):434. doi: 10.3390/bios14090434.
Microwave (MW) sensing is regarded as a promising technique for various medical monitoring and diagnostic applications due to its numerous advantages and the potential to be developed into a portable device for use outside hospital settings. The detection of skull fractures and the monitoring of their healing process would greatly benefit from a rapidly and frequently usable application that can be employed outside the hospital. This paper presents a simulation- and experiment-based study on skull fracture detection with the MW technique using realistic models for the first time. It also presents assessments on the most promising frequency ranges for skull fracture detection within the Industrial, Scientific and Medical (ISM) and ultrawideband (UWB) ranges. Evaluations are carried out with electromagnetic simulations using different head tissue layer models corresponding to different locations in the human head, as well as an anatomically realistic human head simulation model. The measurements are conducted with a real human skull combined with tissue phantoms developed in our laboratory. The comprehensive evaluations show that fractures cause clear differences in antenna and channel parameters (S11 and S21). The difference in S11 is 0.1-20 dB and in S21 is 0.1-30 dB, depending on the fracture width and location. Skull fractures with a less than 1 mm width can be detected with microwaves at different fracture locations. The detectability is frequency dependent. Power flow representations illustrate how fractures impact on the signal propagation at different frequencies. MW-based detection of skull fractures provides the possibility to (1) detect fractures using a safe and low-cost portable device, (2) monitor the healing-process of fractures, and (3) bring essential information for emerging portable MW-based diagnostic applications that can detect, e.g., strokes.
微波(MW)感应技术由于其众多优势,并且有可能开发成可在医院环境之外使用的便携式设备,因此被认为是各种医疗监测和诊断应用的有前途的技术。颅骨骨折的检测及其愈合过程的监测将极大地受益于一种快速且频繁使用的应用程序,该应用程序可在医院之外使用。本文首次使用现实模型对基于微波技术的颅骨骨折检测进行了基于模拟和实验的研究。它还评估了在工业、科学和医学(ISM)和超宽带(UWB)范围内最有前途的颅骨骨折检测频率范围。评估是使用不同的头部组织层模型进行的,这些模型对应于人体头部的不同位置,以及一个解剖学上逼真的人体头部模拟模型进行电磁模拟。测量是使用真实的人类头骨和我们实验室开发的组织模型进行的。综合评估表明,骨折会导致天线和通道参数(S11 和 S21)明显不同。S11 的差异为 0.1-20dB,S21 的差异为 0.1-30dB,具体取决于骨折的宽度和位置。不同骨折位置的微波可以检测出宽度小于 1 毫米的骨折。检测能力取决于频率。功率流表示说明了骨折如何在不同频率下影响信号传播。基于微波的颅骨骨折检测提供了以下可能性:(1) 使用安全且低成本的便携式设备检测骨折;(2) 监测骨折的愈合过程;(3) 为新兴的基于微波的便携式诊断应用提供必要信息,例如可以检测中风的应用。