Mazor Matan, Mukamel Roy
All Souls College, University of Oxford, Oxford OX1 4AL, UK.
School of Psychological Sciences, University of Oxford, Oxford OX1 2JD, UK.
Entropy (Basel). 2024 Sep 2;26(9):751. doi: 10.3390/e26090751.
Functional neuroimaging analysis takes noisy multidimensional measurements as input and produces statistical inferences regarding the functional properties of brain regions as output. Such inferences are most commonly model-based, in that they assume a model of how neural activity translates to the measured signal (blood oxygenation level-dependent signal in the case of functional MRI). The use of models increases statistical sensitivity and makes it possible to ask fine-grained theoretical questions. However, this comes at the cost of making theoretical assumptions about the underlying data-generating process. An advantage of model-free approaches is that they can be used in cases where model assumptions are known not to hold. To this end, we introduce a randomization-based, model-free approach to functional neuroimaging. TWISTER randomization makes it possible to infer functional selectivity from correlations between experimental runs. We provide a proof of concept in the form of a visuomotor mapping experiment and discuss the possible strengths and limitations of this new approach in light of our empirical results.
功能神经影像学分析将有噪声的多维测量作为输入,并产生关于脑区功能特性的统计推断作为输出。此类推断最常见的是基于模型的,因为它们假定了一个关于神经活动如何转化为测量信号(在功能磁共振成像的情况下为血氧水平依赖信号)的模型。模型的使用提高了统计敏感性,并使得提出细粒度的理论问题成为可能。然而,这是以对潜在数据生成过程做出理论假设为代价的。无模型方法的一个优点是,在已知模型假设不成立的情况下也可以使用。为此,我们引入一种基于随机化的无模型功能神经影像学方法。TWISTER随机化使得从实验运行之间的相关性推断功能选择性成为可能。我们以视觉运动映射实验的形式提供了一个概念验证,并根据我们的实证结果讨论了这种新方法可能的优点和局限性。