Suppr超能文献

解读乳腺癌:利用影像组学从乳腺X线图像中直接无创揭示分子亚型

Decoding Breast Cancer: Using Radiomics to Non-Invasively Unveil Molecular Subtypes Directly from Mammographic Images.

作者信息

Bakker Manon A G, Ovalho Maria de Lurdes, Matela Nuno, Mota Ana M

机构信息

Faculty of Science and Engineering, University of Groningen, 9700 AS Groningen, The Netherlands.

Departamento de Radiologia, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisboa, Portugal.

出版信息

J Imaging. 2024 Sep 4;10(9):218. doi: 10.3390/jimaging10090218.

Abstract

Breast cancer is the most commonly diagnosed cancer worldwide. The therapy used and its success depend highly on the histology of the tumor. This study aimed to explore the potential of predicting the molecular subtype of breast cancer using radiomic features extracted from screening digital mammography (DM) images. A retrospective study was performed using the OPTIMAM Mammography Image Database (OMI-DB). Four binary classification tasks were performed: luminal A vs. non-luminal A, luminal B vs. non-luminal B, TNBC vs. non-TNBC, and HER2 vs. non-HER2. Feature selection was carried out by Pearson correlation and LASSO. The support vector machine (SVM) and naive Bayes (NB) ML classifiers were used, and their performance was evaluated with the accuracy and the area under the receiver operating characteristic curve (AUC). A total of 186 patients were included in the study: 58 luminal A, 35 luminal B, 52 TNBC, and 41 HER2. The SVM classifier resulted in AUCs during testing of 0.855 for luminal A, 0.812 for luminal B, 0.789 for TNBC, and 0.755 for HER2, respectively. The NB classifier showed AUCs during testing of 0.714 for luminal A, 0.746 for luminal B, 0.593 for TNBC, and 0.714 for HER2. The SVM classifier outperformed NB with statistical significance for luminal A ( = 0.0268) and TNBC ( = 0.0073). Our study showed the potential of radiomics for non-invasive breast cancer subtype classification.

摘要

乳腺癌是全球最常被诊断出的癌症。所采用的治疗方法及其成效在很大程度上取决于肿瘤的组织学特征。本研究旨在探索利用从乳腺钼靶筛查(DM)图像中提取的放射组学特征来预测乳腺癌分子亚型的潜力。使用OPTIMAM乳腺钼靶图像数据库(OMI-DB)进行了一项回顾性研究。执行了四项二元分类任务:管腔A型与非管腔A型、管腔B型与非管腔B型、三阴性乳腺癌(TNBC)与非三阴性乳腺癌、人表皮生长因子受体2(HER2)阳性与HER2阴性。通过Pearson相关性和套索回归进行特征选择。使用了支持向量机(SVM)和朴素贝叶斯(NB)机器学习分类器,并通过准确率和受试者工作特征曲线下面积(AUC)评估其性能。共有186名患者纳入研究:58例管腔A型、35例管腔B型、52例三阴性乳腺癌和41例HER2阳性。SVM分类器在测试期间得到的AUC分别为:管腔A型0.855、管腔B型0.812、三阴性乳腺癌0.789、HER2阳性0.755。NB分类器在测试期间得到的AUC分别为:管腔A型0.714、管腔B型0.746、三阴性乳腺癌0.593、HER2阳性0.714。对于管腔A型(P = 0.0268)和三阴性乳腺癌(P = 0.0073),SVM分类器的表现显著优于NB分类器。我们的研究表明放射组学在乳腺癌非侵入性亚型分类方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f28a/11432960/19e9285670a4/jimaging-10-00218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验