Suppr超能文献

对比增强乳腺 X 线摄影影像组学分析在乳腺癌分子亚型术前预测中的应用。

Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes.

机构信息

Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.).

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China (S.W., Y.G.).

出版信息

Acad Radiol. 2024 Jun;31(6):2228-2238. doi: 10.1016/j.acra.2023.12.005. Epub 2023 Dec 23.

Abstract

BACKGROUND

Predicting breast cancer molecular subtypes can help guide individualised clinical treatment of patients who need the rational preoperative treatment. This study aimed to investigate the efficacy of preoperative prediction of breast cancer molecular subtypes by contrast-enhanced mammography (CEM) radiomic features.

METHODS

This retrospective two-centre study included women with breast cancer who underwent CEM preoperatively between August 2016 and May 2022. We included 356 patients with 386 lesions, which were grouped into training (n = 162), internal test (n = 160) and external test sets (n = 64). Radiomics features were extracted from low-energy (LE) images and recombined (RC) images and selected. Three dichotomous tasks were established according to postoperative immunohistochemical results: Luminal vs. non-Luminal, human epidermal growth factor receptor (HER2)-enriched vs. non-HER2-enriched, and triple-negative breast cancer (TNBC) vs. non-TNBC. For each dichotomous task, the LE, RC, and LE+RC radiomics models were built by the support vector machine classifier. The prediction performance of the models was assessed by the area under the receiver operating characteristic curve (AUC). Then, the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated for the models. DeLong's test was utilised to compare the AUCs.

RESULTS

Radiomics models based on CEM are valuable for predicting breast cancer molecular subtypes. The LE+RC model achieved the best performance in the test set. The LE+RC model predicted Luminal, HER2-enriched, and TNBC subtypes with AUCs of 0.93, 0.89, and 0.87 in the internal test set and 0.82, 0.83, and 0.69 in the external test set, respectively. In addition, the LE model performed more satisfactorily than the RC model.

CONCLUSION

CEM radiomics features can effectively predict breast cancer molecular subtypes preoperatively, and the LE+RC model has the best predictive performance.

摘要

背景

预测乳腺癌分子亚型有助于指导需要合理术前治疗的患者进行个体化临床治疗。本研究旨在探讨对比增强乳腺摄影术(CEM)放射组学特征术前预测乳腺癌分子亚型的疗效。

方法

本回顾性的双中心研究纳入了 2016 年 8 月至 2022 年 5 月期间接受 CEM 术前检查的乳腺癌女性患者。共纳入 356 名患者的 386 个病灶,分为训练集(n=162)、内部测试集(n=160)和外部测试集(n=64)。从低能(LE)图像和重组(RC)图像中提取放射组学特征,并进行选择。根据术后免疫组织化学结果建立了三个二分类任务:Luminal 与非 Luminal、人表皮生长因子受体(HER2)富集与非 HER2 富集、三阴性乳腺癌(TNBC)与非 TNBC。对于每个二分类任务,采用支持向量机分类器构建 LE、RC 和 LE+RC 放射组学模型。通过受试者工作特征曲线(AUC)评估模型的预测性能。然后计算模型的准确率、敏感度、特异度、阳性预测值和阴性预测值。采用 DeLong 检验比较 AUC。

结果

基于 CEM 的放射组学模型对于预测乳腺癌分子亚型具有重要价值。LE+RC 模型在测试集中表现最佳。LE+RC 模型在内部测试集中预测 Luminal、HER2 富集和 TNBC 亚型的 AUC 分别为 0.93、0.89 和 0.87,在外部测试集中的 AUC 分别为 0.82、0.83 和 0.69。此外,LE 模型的表现优于 RC 模型。

结论

CEM 放射组学特征可有效预测乳腺癌分子亚型,LE+RC 模型具有最佳预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验