Schauer David G, Bredehoeft Jona, Yunusa Umar, Pattammattel Ajith, Wörner Hans Jakob, Sprague-Klein Emily A
ETH Zurich, Dept. of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2 (HCI E 241), 8093 Zürich, Switzerland.
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
Phys Chem Chem Phys. 2024 Oct 9;26(39):25581-25589. doi: 10.1039/d4cp01993h.
In recent years, nanophotonics have had a transformative impact on harnessing energy, directing chemical reactions, and enabling novel molecular dynamics for thermodynamically intensive applications. Plasmonic nanoparticles have emerged as a tool for confining light on nanometer-length scales where regions of intense electromagnetic fields can be precisely tuned for controlled surface chemistry. We demonstrate a precision pH-driven synthesis of gold nanorods with optical resonance properties widely tunable across the near-infrared spectrum. Through controlled electrostatic interactions, we can perform selective adsorbate molecule attachment and monitor the surface transitions through spectroscopic techniques that include ground-state absorption spectrophotometry, two-dimensional X-ray absorption near-edge spectroscopy, Fourier-transform infrared spectroscopy, and surface-enhanced Raman spectroscopy. We elucidate the electronic, structural, and chemical factors that contribute to plasmon-molecule dynamics at the nanoscale with broad implications for the fields of energy, photonics, and bio-inspired materials.
近年来,纳米光子学在能量利用、化学反应引导以及为热力学密集型应用实现新型分子动力学方面产生了变革性影响。等离子体纳米粒子已成为一种在纳米尺度上限制光的工具,在该尺度下,强电磁场区域可被精确调节以实现可控的表面化学。我们展示了一种精确的pH驱动的金纳米棒合成方法,其光学共振特性在近红外光谱范围内可广泛调谐。通过可控的静电相互作用,我们能够进行选择性吸附分子附着,并通过包括基态吸收分光光度法、二维X射线吸收近边光谱法、傅里叶变换红外光谱法和表面增强拉曼光谱法在内的光谱技术监测表面转变。我们阐明了在纳米尺度上对等离子体 - 分子动力学有贡献的电子、结构和化学因素,这对能源、光子学和生物启发材料领域具有广泛影响。