Institute for Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Institute of Neuroscience (IoNS), Université Catholique de Louvain, Brussels, Belgium.
Elife. 2024 Sep 27;13:RP96854. doi: 10.7554/eLife.96854.
Combining individual actions into sequences is a hallmark of everyday activities. Classical theories propose that the motor system forms a single specification of the sequence as a whole, leading to the coarticulation of the different elements. In contrast, recent neural recordings challenge this idea and suggest independent execution of each element specified separately. Here, we show that separate or coarticulated sequences can result from the same task-dependent controller, without implying different representations in the brain. Simulations show that planning for multiple reaches simultaneously allows separate or coarticulated sequences depending on instructions about intermediate goals. Human experiments in a two-reach sequence task validated this model. Furthermore, in co-articulated sequences, the second goal influenced long-latency stretch responses to external loads applied during the first reach, demonstrating the involvement of the sensorimotor network supporting fast feedback control. Overall, our study establishes a computational framework for sequence production that highlights the importance of feedback control in this essential motor skill.
将个体动作组合成序列是日常活动的一个特点。经典理论提出,运动系统形成了整个序列的单一规范,导致不同元素的协同发音。相比之下,最近的神经记录挑战了这一观点,表明每个元素都是单独指定并独立执行的。在这里,我们表明,单独的或协同发音的序列可以来自于相同的任务相关控制器,而不需要在大脑中存在不同的表示。模拟表明,同时规划多个到达目的地的路径可以根据关于中间目标的指令产生单独的或协同发音的序列。在一个两阶段到达序列任务中的人类实验验证了该模型。此外,在协同发音的序列中,第二个目标会影响对外加在第一个到达过程中负载的长潜伏期伸展反应,这表明支持快速反馈控制的感觉运动网络的参与。总的来说,我们的研究建立了一个用于序列产生的计算框架,强调了反馈控制在这项基本运动技能中的重要性。