文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过单细胞和 bulk RNA-seq 分析揭示胰腺癌相关成纤维细胞的风险特征。

Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis.

机构信息

Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Aging (Albany NY). 2024 Sep 26;16(18):12525-12542. doi: 10.18632/aging.206043.


DOI:10.18632/aging.206043
PMID:39332020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11466480/
Abstract

PURPOSE: Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS: The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS: Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS: The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.

摘要

目的:基质结缔组织的增殖是胰腺导管腺癌(PAAD)的一个标志。激活的癌相关成纤维细胞(CAF)的参与通过参与肿瘤纤维化促进 PAAD 的进展。然而,基于 CAF 的风险特征在 PAAD 中的预后意义尚未得到探索。

方法:从基因表达综合数据库(GEO)中的 GSE155698 中获取的单细胞 RNA 测序(scRNA-seq)数据,通过 Seurat 包进行处理,利用特定的 CAF 标记识别不同的 CAF 簇。利用 TCGA-PAAD 队列中的 bulk RNA 测序数据和从 GEO 数据库中检索的微阵列数据对 scRNA-seq 数据进行补充。在 TCGA-PAAD 队列中对正常和肿瘤样本之间的差异基因表达进行分析。单因素 Cox 回归分析确定与 CAF 簇相关的基因,确定与 CAF 相关的预后基因。这些基因用于 LASSO 回归构建预测风险特征。随后,整合临床病理特征和风险特征构建列线图模型。

结果:我们的 scRNA-seq 分析揭示了 PAAD 中的四个不同的 CAF 簇,其中两个与 PAAD 的预后相关。在 207 个鉴定的差异表达基因中,有 148 个与这些 CAF 簇显著相关,构成了一个七基因风险特征的基础。该特征在多变量分析中成为 PAAD 的独立预测因子,并在免疫治疗结果中显示出预测效力。此外,一个新的列线图,整合了年龄和基于 CAF 的风险特征,在预测 PAAD 方面表现出强大的预测能力和可靠性。此外,该风险特征与基质和免疫评分以及特定的免疫细胞类型有显著相关性。

结论:可以使用基于 CAF 的风险特征准确预测 PAAD 的预后,对 PAAD 的 CAF 特征进行全面分析可能有助于破译患者的免疫治疗反应,并提供新的癌症治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/aaf2b79541a1/aging-16-206043-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/754b8fa481a4/aging-16-206043-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/1139aefc8d7c/aging-16-206043-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/77a8117c666f/aging-16-206043-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/4369075f62bb/aging-16-206043-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/c2b27747b841/aging-16-206043-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/aaf2b79541a1/aging-16-206043-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/754b8fa481a4/aging-16-206043-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/1139aefc8d7c/aging-16-206043-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/77a8117c666f/aging-16-206043-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/4369075f62bb/aging-16-206043-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/c2b27747b841/aging-16-206043-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/11466480/aaf2b79541a1/aging-16-206043-g006.jpg

相似文献

[1]
Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis.

Aging (Albany NY). 2024-9-26

[2]
RNA-seq and bulk RNA-seq data analysis of cancer-related fibroblasts (CAF) in LUAD to construct a CAF-based risk signature.

Sci Rep. 2024-10-6

[3]
Characterization of cancer-related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data.

Front Immunol. 2022

[4]
A fibroblast-associated signature predicts prognosis and immunotherapy in esophageal squamous cell cancer.

Front Immunol. 2023

[5]
Integration of single-cell RNA-seq and bulk RNA-seq data to construct and validate a cancer-associated fibroblast-related prognostic signature for patients with ovarian cancer.

J Ovarian Res. 2024-4-16

[6]
A novel signature predicts prognosis and immunotherapy in lung adenocarcinoma based on cancer-associated fibroblasts.

Front Immunol. 2023

[7]
Characterization of tumor endothelial cells (TEC) in gastric cancer and development of a TEC-based risk signature using single-cell RNA-seq and bulk RNA-seq data.

Aging (Albany NY). 2024-6-12

[8]
Identification and validation of cancer-associated fibroblast-related subtypes and the prognosis model of biochemical recurrence in prostate cancer based on single-cell and bulk RNA sequencing.

J Cancer Res Clin Oncol. 2023-10

[9]
Using ESTIMATE algorithm to establish an 8-mRNA signature prognosis prediction system and identify immunocyte infiltration-related genes in Pancreatic adenocarcinoma.

Aging (Albany NY). 2020-3-17

[10]
Integrating single-cell and bulk RNA sequencing data unveils antigen presentation and process-related CAFS and establishes a predictive signature in prostate cancer.

J Transl Med. 2024-1-14

本文引用的文献

[1]
Prognostic value and multifaceted roles of tetraspanin CD9 in cancer.

Front Oncol. 2023-3-17

[2]
The novel subclusters based on cancer-associated fibroblast for pancreatic adenocarcinoma.

Front Oncol. 2022-12-5

[3]
Cuprotosis Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis and Immune Landscape in PAAD Patients.

Cells. 2022-10-31

[4]
LRRC15 myofibroblasts dictate the stromal setpoint to suppress tumour immunity.

Nature. 2022-11

[5]
Single-cell sequencing reveals heterogeneity between pancreatic adenosquamous carcinoma and pancreatic ductal adenocarcinoma with prognostic value.

Front Immunol. 2022

[6]
Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer.

Cancer Cell. 2022-6-13

[7]
Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL6-Mediated Therapy Resistance in Pancreatic Cancer.

Cancer Discov. 2022-6-2

[8]
Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression.

J Immunother Cancer. 2022-3

[9]
Repeat expression is linked to patient survival and exhibits single nucleotide variation in pancreatic cancer revealing LTR70:r.879A>G.

Gene. 2022-5-15

[10]
B Cell Function in the Tumor Microenvironment.

Annu Rev Immunol. 2022-4-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索