Suppr超能文献

A three-dimensional printable conductive composite dressing for accelerating wound healing under electrical stimulation.

作者信息

Chai Xinxiang, Lou Yanzhen, Nie Lei, Shavandi Amin, Yunusov Khaydar E, Sun Yanfang, Jiang Guohua

机构信息

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China.

College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.

出版信息

Colloids Surf B Biointerfaces. 2025 Jan;245:114264. doi: 10.1016/j.colsurfb.2024.114264. Epub 2024 Sep 23.

Abstract

In this study, a bioink based on poly(vinyl alcohol) (PVA) and κ-carrageenan network was prepared using conductive polymer (PEDOT:PSS) as conducting medium, and (+)-Catechin-loaded mesoporous ZnO (CmZnO) as antibacterial and anti-inflammatory active medium. 3D conductive composite dressing was further fabricated by an extrusion 3D printing technology. Our results showed that the as-obtained composite dressing had suitable conductivity, efficient blood clotting capacity, and good adhesiveness. It also showed that the as-fabricated conductive composite had 92.9 % and 95.6 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the conductive dressing with an optimal electrical stimulation (ES) parameter showed in vivo blood clotting capacity, and it enhanced in vivo wound healing process in a full-thickness skin defect model than commercial dressings by upregulating the gene expression of growth factors including CD-31 and downregulating inflammatory factor expression of IL-6.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验