Suppr超能文献

用于CMIP气候模型性能评估的DRIP(干旱表征指数)的开发及其在巴西东南部的应用

Development of DRIP - drought representation index for CMIP climate model performance, application to Southeast Brazil.

作者信息

Almeida Lucas Pereira de, Formiga-Johnsson Rosa Maria, Souza Filho Francisco de Assis de, Estácio Ályson Brayner Sousa, Porto Victor Costa, Nauditt Alexandra, Ribbe Lars

机构信息

PhD Program in Environmental Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Department of Environmental and Sanitary Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Sci Total Environ. 2024 Dec 1;954:176443. doi: 10.1016/j.scitotenv.2024.176443. Epub 2024 Sep 25.

Abstract

With the escalating impacts of drought events driven by climate change, reducing the uncertainty of drought projections becomes critical for enhancing risk management and adaptation strategies. This study aimed to develop an index for assessing the performance of CMIP6 Global Climate Models in simulating meteorological drought scenarios across regional hydrological systems, intended to provide more reliable information for management purposes. Named the 'Drought Representation Index for CMIP Climate Model Performance' (DRIP), this index evaluates CMIP models' performance to represent drought severity, duration, and return period. DRIP was used to select CMIP models and create an ensemble of the best-performing models (E-DRIP) to improve the reliability of drought projections. E-DRIP was then compared with a general ensemble of available CMIP6 models (E-CMIP). We applied this method in Southeast Brazil, a region known for its climate uncertainties and low predictability; specifically, it was implemented within the Paraíba do Sul River Basin, a nationally strategic watershed in a highly populated and industrialized area, which has recently faced unprecedented drought-related water crises. Results showed that DRIP effectively assessed the individual performance of CMIP models, which exhibited considerable variability, and identified the top-performing models for a multi-model ensemble. Additionally, the E-DRIP ensemble significantly reduced uncertainties in drought projections, achieving an average reduction of 63 % in the study area compared to E-CMIP. Furthermore, the proposed method enables evaluations across any standardized drought index scale, reference period, or threshold, and can be readily adapted to other hydrological systems.

摘要

随着气候变化导致干旱事件的影响不断升级,降低干旱预测的不确定性对于加强风险管理和适应策略至关重要。本研究旨在开发一种指数,用于评估CMIP6全球气候模型在模拟区域水文系统气象干旱情景方面的表现,旨在为管理目的提供更可靠的信息。该指数名为“CMIP气候模型性能干旱表征指数”(DRIP),用于评估CMIP模型在表征干旱严重程度、持续时间和重现期方面的性能。DRIP被用于选择CMIP模型,并创建一组表现最佳的模型(E-DRIP),以提高干旱预测的可靠性。然后将E-DRIP与可用的CMIP6模型的一般集合(E-CMIP)进行比较。我们在巴西东南部应用了这种方法,该地区以其气候不确定性和低可预测性而闻名;具体而言,该方法在南帕拉伊巴河流域实施,该流域是一个位于人口密集和工业化地区的国家战略流域,最近面临前所未有的与干旱相关的水危机。结果表明,DRIP有效地评估了CMIP模型的个体性能,这些模型表现出相当大的变异性,并确定了多模型集合中表现最佳的模型。此外,E-DRIP集合显著降低了干旱预测的不确定性,与E-CMIP相比,研究区域的不确定性平均降低了63%。此外,所提出的方法能够跨任何标准化干旱指数尺度、参考期或阈值进行评估,并且可以很容易地适用于其他水文系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验