Suppr超能文献

DRIP的方法框架:用于CMIP模型性能的干旱表征指数

The methodological framework for DRIP: Drought representation index for CMIP model performance.

作者信息

Almeida Lucas Pereira de, Estácio Ályson Brayner Sousa, Formiga-Johnsson Rosa Maria, Souza Filho Francisco de Assis de, Porto Victor Costa, Nauditt Alexandra, Ribbe Lars, Ohnuma Júnior Alfredo Akira

机构信息

Postgraduate Program in Environmental Engineering (DEAMB), State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Research Institute for Meteorology and Water Resources (FUNCEME), Fortaleza, Ceará, Brazil.

出版信息

MethodsX. 2025 Feb 27;14:103249. doi: 10.1016/j.mex.2025.103249. eCollection 2025 Jun.

Abstract

This paper presents a designed to evaluate the ability of CMIP climate models to simulate drought characteristics. The approach is based on the , which assesses models using three key drought parameters-average duration, severity, and return period-by comparing simulated outputs with historical observations. The methodology encompasses four main stages: data acquisition and preparation, drought characterization, DRIP calculation, and model ensemble generation (E-DRIP). This approach provides a systematic method to identify models that best represent regional drought dynamics and reduce uncertainty in climate projections. By leveraging DRIP as a selection criterion, E-DRIP ensembles outperform traditional CMIP ensembles in both reliability and precision. The method's flexibility allows adaptation to various drought indices and temporal scales, making it applicable across diverse climatic contexts. Validation in a climatically uncertain area, the Paraíba do Sul River Basin in Southeast Brazil, demonstrates DRIP's effectiveness in enhancing model performance assessment and improving drought scenario projections. This study contributes a replicable tool for climate modelling, supporting water resources management strategies amid increasing climate variability.•DRIP index assesses CMIP models' performance in representing drought characteristics.•E-DRIP ensembles reduced drought projections uncertainties by up to 63 % in the validation study area.•DRIP enhances decision-making in climate model selection, improving its reliability for regional water planning.

摘要

本文介绍了一种旨在评估CMIP气候模型模拟干旱特征能力的方法。该方法基于干旱响应指数方法(DRIP),通过将模拟输出与历史观测数据进行比较,使用三个关键干旱参数——平均持续时间、严重程度和重现期——来评估模型。该方法包括四个主要阶段:数据采集与准备、干旱特征描述、DRIP计算和模型集合生成(E-DRIP)。这种方法提供了一种系统的方法来识别最能代表区域干旱动态的模型,并减少气候预测中的不确定性。通过将DRIP用作选择标准,E-DRIP集合在可靠性和精度方面均优于传统的CMIP集合。该方法的灵活性允许其适应各种干旱指数和时间尺度,使其适用于不同的气候环境。在气候不确定地区——巴西东南部的南帕拉伊巴河流域进行的验证表明,DRIP在增强模型性能评估和改善干旱情景预测方面具有有效性。本研究为气候建模贡献了一种可复制的工具,支持在气候变率不断增加的情况下的水资源管理策略。

•DRIP指数评估CMIP模型在表征干旱特征方面 的性能。

•在验证研究区域,E-DRIP集合将干旱预测的不确定性降低了多达63%。

•DRIP增强了气候模型选择中的决策制定,提高了其在区域水资源规划中的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1cd/11929938/3d802cee4720/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验