Wen Yizhuo, Guo Junhong, Wang Feng, Hao Zhenda, Fei Yifan, Yang Aili, Fan Yurui, Chan Faith Ka Shun
Key Laboratory of Environmental Biotechnology, Xiamen University of Technology, Xiamen, 361024, China.
School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China.
Sci Data. 2024 Sep 27;11(1):1047. doi: 10.1038/s41597-024-03883-z.
Global climate change is leading to an increase in compound hot-dry events, significantly impacting human habitats. Analysing the causes and effects of these events requires precise data, yet most meteorological data focus on variables rather than extremes, which hinders relevant research. A daily compound hot-dry events (CHDEs) dataset was developed from 1980 to 2100 under various socioeconomic scenarios, using the latest NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) dataset to address this. The dataset has a spatial resolution of 0.25 degrees (approximately 30 kilometres), including three indicators, namely D (the yearly sum of hot-dry extreme days), prI (the intensity of daily precipitation), and tasI (the intensity of daily temperature). To validate the accuracy of the dataset, we compared observational data from China (National Meteorological Information Center, NMIC), Europe (ERA5), and North America (ERA5). Results show close alignment with estimated values from the observational daily dataset, both temporally and spatially. The predictive interval (PI) pass rates for the CHDEs dataset exhibit notably high values. For a 90% PI, D has a pass rate exceeding 85%, whilst prI and tasI respectively show a pass rate above 70% and 95%. These results underscore its suitability for conducting global and regional studies about compound hot-dry events.
全球气候变化正导致复合型干热事件增多,对人类栖息地产生重大影响。分析这些事件的成因和影响需要精确的数据,但大多数气象数据关注的是变量而非极端情况,这阻碍了相关研究。为解决这一问题,利用最新的美国国家航空航天局地球交换全球每日降尺度预测数据集(NEX - GDDP - CMIP6),开发了一个1980年至2100年不同社会经济情景下的每日复合型干热事件(CHDEs)数据集。该数据集的空间分辨率为0.25度(约30公里),包括三个指标,即D(干热极端日的年总和)、prI(日降水量强度)和tasI(日温度强度)。为验证数据集的准确性,我们将其与来自中国(国家气象信息中心,NMIC)、欧洲(ERA5)和北美的观测数据(ERA5)进行了比较。结果表明,在时间和空间上,该数据集与观测日数据集的估计值都非常吻合。CHDEs数据集的预测区间(PI)通过率显示出极高的值。对于90%的PI,D的通过率超过85%,而prI和tasI的通过率分别高于70%和95%。这些结果强调了其适用于开展关于复合型干热事件的全球和区域研究。