Suppr超能文献

新冠疫情期间疾病传播的演变:模式和决定因素。

Evolution of disease transmission during the COVID-19 pandemic: patterns and determinants.

机构信息

Centre for Big Data Research in Health, UNSW Sydney, Sydney, NSW, 2052, Australia.

出版信息

Sci Rep. 2021 May 26;11(1):11029. doi: 10.1038/s41598-021-90347-8.

Abstract

Epidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ([Formula: see text]). The relationship between public health interventions and [Formula: see text] was explored, firstly using a hierarchical clustering algorithm on initial [Formula: see text] patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, [Formula: see text], and daily incidence counts in subsequent months. The impact of updating [Formula: see text] every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future [Formula: see text] (75 days lag), while a lower [Formula: see text] was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated [Formula: see text] produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when [Formula: see text] was kept constant. Monitoring the evolution of [Formula: see text] during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated [Formula: see text] values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of [Formula: see text] over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.

摘要

政府正在利用传染病模型来制定公共卫生策略,以减少 SARS-CoV-2 的传播。这些模型通过操纵控制疾病传播和恢复过程的模型参数来模拟潜在场景。然而,由于公共卫生干预措施对疾病传播的影响存在不确定性,这些参数的有效性受到了挑战,而且在疫情爆发期间,这些模型的预测准确性很少受到调查。我们根据 101 个国家与 SARS-CoV-2 感染相关的报告病例、康复和死亡数据,拟合了一个随机传播模型。疾病传播的动态用每日有效繁殖数(R_t)来表示。我们首先使用层次聚类算法对初始 R_t 模式进行分析,其次计算实施的政策数量、R_t 与随后几个月的每日发病率之间的时间滞后交叉相关,以探索公共卫生干预措施与 R_t 之间的关系。我们还研究了每次进行预测时更新 R_t 对模型预测准确性的影响。我们确定了大流行前 6 个月具有不同传播模式的 5 组国家。早期采取社会隔离措施和干预措施之间的时间间隔较短与疫情持续时间的缩短有关。滞后相关性分析表明,政策数量的增加与未来 R_t 的降低(75 天滞后)有关,而 R_t 的降低与未来政策数量的减少(102 天滞后)有关。最后,使用动态更新的 R_t 进行爆发预测时,模型的平均 AUC 为 0.72(0.708,0.723),而当 R_t 保持不变时,模型的 AUC 为 0.56(0.555,0.568)。在疫情期间监测 R_t 的演变是报告的每日病例、康复和死亡数据的重要补充信息,因为它提供了控制措施效果的早期信号。使用更新后的 R_t 值可以显著提高对未来疫情的预测准确性。我们的研究结果发现,早期公共卫生干预措施对 R_t 演变的影响在时间和国家之间存在差异,这不能仅用所采取的干预措施的时间和数量来解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b0/8155190/e921818af1d2/41598_2021_90347_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验