Shanghai Jiao Tong University, Shanghai, China.
Shanghai AI Laboratory, Shanghai, China.
Nat Commun. 2024 Sep 27;15(1):8384. doi: 10.1038/s41467-024-52417-z.
The development of open-source, multilingual medical language models can benefit a wide, linguistically diverse audience from different regions. To promote this domain, we present contributions from the following: First, we construct a multilingual medical corpus, containing approximately 25.5B tokens encompassing 6 main languages, termed as MMedC, enabling auto-regressive domain adaptation for general LLMs; Second, to monitor the development of multilingual medical LLMs, we propose a multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench; Third, we have assessed a number of open-source large language models (LLMs) on our benchmark, along with those further auto-regressive trained on MMedC. Our final model, MMed-Llama 3, with only 8B parameters, achieves superior performance compared to all other open-source models on both MMedBench and English benchmarks, even rivaling GPT-4. In conclusion, in this work, We present a large-scale corpus, a benchmark and a series of models to support the development of multilingual medical LLMs.
开源、多语言医学语言模型的发展可以使来自不同地区的广泛的、语言多样化的受众受益。为了促进这一领域的发展,我们提出了以下贡献:首先,我们构建了一个多语言医学语料库,包含大约 255 亿个包含 6 种主要语言的令牌,称为 MMedC,能够实现通用大语言模型的自回归领域自适应;其次,为了监测多语言医学大语言模型的发展,我们提出了一个带有推理的多语言医学多项选择问答基准,称为 MMedBench;第三,我们在基准上评估了一些开源的大语言模型(LLMs),以及那些在 MMedC 上进一步自回归训练的模型。我们的最终模型 MMed-Llama 3 只有 80 亿个参数,在 MMedBench 和英语基准上的表现都优于所有其他开源模型,甚至可以与 GPT-4 相媲美。总之,在这项工作中,我们提出了一个大规模语料库、一个基准和一系列模型,以支持多语言医学大语言模型的发展。
Nat Commun. 2024-9-27
Artif Intell Med. 2024-9
J Am Med Inform Assoc. 2024-9-1
medRxiv. 2025-2-10
Artif Intell Med. 2025-8
J Am Med Inform Assoc. 2025-3-1
Proc Natl Acad Sci U S A. 2024-8-20
Yearb Med Inform. 2024-8
Health Data Sci. 2025-4-1
Comput Struct Biotechnol J. 2025-2-20
J Am Med Inform Assoc. 2024-9-1
NPJ Digit Med. 2023-10-20
Nature. 2023-8
PLOS Digit Health. 2023-2-9