Suppr超能文献

一种基于概念的两步法,用于增强皮肤病变诊断的可解释性和可信度。

A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis.

作者信息

Patrício Cristiano, Teixeira Luís F, Neves João C

机构信息

Universidade da Beira Interior and NOVA LINCS, Portugal.

INESC TEC, Portugal.

出版信息

Comput Struct Biotechnol J. 2025 Feb 20;28:71-79. doi: 10.1016/j.csbj.2025.02.013. eCollection 2025.

Abstract

The main challenges hindering the adoption of deep learning-based systems in clinical settings are the scarcity of annotated data and the lack of interpretability and trust in these systems. Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts. However, this inherent interpretability comes at the cost of greater annotation burden. Additionally, adding new concepts requires retraining the entire system. In this work, we introduce a novel two-step methodology that addresses both of these challenges. By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses grounded on the predicted concepts. Furthermore, our approach supports test-time human intervention, enabling corrections to predicted concepts, which improves final diagnoses and enhances transparency in decision-making. We validate our approach on three skin lesion datasets, demonstrating that it outperforms traditional CBMs and state-of-the-art explainable methods, all without requiring any training and utilizing only a few annotated examples. The code is available at https://github.com/CristianoPatricio/2-step-concept-based-skin-diagnosis.

摘要

阻碍深度学习系统在临床环境中应用的主要挑战是标注数据的稀缺以及对这些系统缺乏可解释性和信任度。概念瓶颈模型(CBM)通过在一组人类可理解的概念上约束最终疾病预测,提供了内在的可解释性。然而,这种内在的可解释性是以更大的标注负担为代价的。此外,添加新概念需要重新训练整个系统。在这项工作中,我们引入了一种新颖的两步法来应对这两个挑战。通过模拟CBM的两个阶段,我们利用预训练的视觉语言模型(VLM)自动预测临床概念,并利用现成的大语言模型(LLM)基于预测的概念生成疾病诊断。此外,我们的方法支持测试时的人工干预,能够对预测的概念进行修正,从而改善最终诊断并提高决策透明度。我们在三个皮肤病变数据集上验证了我们的方法,表明它优于传统的CBM和当前最先进的可解释方法,所有这些都无需任何训练,仅使用少量标注示例。代码可在https://github.com/CristianoPatricio/2-step-concept-based-skin-diagnosis获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27a2/11907460/e8f1ad27f253/gr001.jpg

相似文献

1
A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis.
Comput Struct Biotechnol J. 2025 Feb 20;28:71-79. doi: 10.1016/j.csbj.2025.02.013. eCollection 2025.
2
Disease-informed Adaptation of Vision-Language Models.
IEEE Trans Med Imaging. 2024 Oct 21;PP. doi: 10.1109/TMI.2024.3484294.
3
X-CHAR: A Concept-based Explainable Complex Human Activity Recognition Model.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2023 Mar;7(1). doi: 10.1145/3580804. Epub 2023 Mar 28.
4
Concept-Based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis.
IEEE Trans Med Imaging. 2025 Jan;44(1):57-68. doi: 10.1109/TMI.2024.3429148. Epub 2025 Jan 2.
5
Enhancing Bottleneck Concept Learning in Image Classification.
Sensors (Basel). 2025 Apr 10;25(8):2398. doi: 10.3390/s25082398.
6
Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
Front Med (Lausanne). 2022 Nov 8;9:1050436. doi: 10.3389/fmed.2022.1050436. eCollection 2022.
9
Predicting explainable dementia types with LLM-aided feature engineering.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf156.
10
SmartSkin-XAI: An Interpretable Deep Learning Approach for Enhanced Skin Cancer Diagnosis in Smart Healthcare.
Diagnostics (Basel). 2024 Dec 30;15(1):64. doi: 10.3390/diagnostics15010064.

本文引用的文献

1
Towards building multilingual language model for medicine.
Nat Commun. 2024 Sep 27;15(1):8384. doi: 10.1038/s41467-024-52417-z.
2
MedCLIP: Contrastive Learning from Unpaired Medical Images and Text.
Proc Conf Empir Methods Nat Lang Process. 2022 Dec;2022:3876-3887. doi: 10.18653/v1/2022.emnlp-main.256.
3
Transparent medical image AI via an image-text foundation model grounded in medical literature.
Nat Med. 2024 Apr;30(4):1154-1165. doi: 10.1038/s41591-024-02887-x. Epub 2024 Apr 16.
4
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma.
Nat Commun. 2024 Jan 15;15(1):524. doi: 10.1038/s41467-023-43095-4.
5
Best Practices for Clinical Skin Image Acquisition in Translational Artificial Intelligence Research.
J Invest Dermatol. 2023 Jul;143(7):1127-1132. doi: 10.1016/j.jid.2023.02.035.
6
The role of public challenges and data sets towards algorithm development, trust, and use in clinical practice.
Semin Cutan Med Surg. 2019 Mar 1;38(1):E38-E42. doi: 10.12788/j.sder.2019.013.
8
7-Point Checklist and Skin Lesion Classification using Multi-Task Multi-Modal Neural Nets.
IEEE J Biomed Health Inform. 2018 Apr 9. doi: 10.1109/JBHI.2018.2824327.
9
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
10
PH² - a dermoscopic image database for research and benchmarking.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5437-40. doi: 10.1109/EMBC.2013.6610779.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验