Masalkovaitė Karina, Gasper Paul, Finegan Donal P
Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
National Renewable Energy Laboratory (NREL), 15014 Denver W Pkwy, Golden, CO, 80401, USA.
Nat Commun. 2024 Sep 27;15(1):8399. doi: 10.1038/s41467-024-52653-3.
Accurate measurement of the variability of thermal runaway behavior of lithium-ion cells is critical for designing safe battery systems. However, experimentally determining such variability is challenging, expensive, and time-consuming. Here, we utilize a transfer learning approach to accurately estimate the variability of heat output during thermal runaway using only ejected mass measurements and cell metadata, leveraging 139 calorimetry measurements on commercial lithium-ion cells available from the open-access Battery Failure Databank. We show that the distribution of heat output, including outliers, can be predicted accurately and with high confidence for new cell types using just 0 to 5 calorimetry measurements by leveraging behaviors learned from the Battery Failure Databank. Fractional heat ejection from the positive vent, cell body, and negative vent are also accurately predicted. We demonstrate that by using low cost and fast measurements, we can predict the variability in thermal behaviors of cells, thus accelerating critical safety characterization efforts.
准确测量锂离子电池热失控行为的变异性对于设计安全的电池系统至关重要。然而,通过实验确定这种变异性具有挑战性、成本高且耗时。在此,我们利用迁移学习方法,仅使用喷出质量测量值和电池元数据,就能准确估计热失控期间的热输出变异性,这得益于从开放获取的电池失效数据库中获取的139个商用锂离子电池的量热测量数据。我们表明,通过利用从电池失效数据库中学到的行为,仅使用0至5次量热测量,就能准确且高度自信地预测包括异常值在内的热输出分布。从正极排气孔、电池主体和负极排气孔的热喷射分数也能被准确预测。我们证明,通过使用低成本和快速测量方法,我们可以预测电池热行为的变异性,从而加快关键安全特性的表征工作。