Suppr超能文献

利用卷积神经网络从 CT 扫描中预测棕色脂肪组织的标准化摄取值。

Predicting standardized uptake value of brown adipose tissue from CT scans using convolutional neural networks.

机构信息

Computer Vision Lab., ETH Zurich, Zurich, Switzerland.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Commun. 2024 Sep 27;15(1):8402. doi: 10.1038/s41467-024-52622-w.

Abstract

The standard method for identifying active Brown Adipose Tissue (BAT) is [F]-Fluorodeoxyglucose ([F]-FDG) PET/CT imaging, which is costly and exposes patients to radiation, making it impractical for population studies. These issues can be addressed with computational methods that predict [F]-FDG uptake by BAT from CT; earlier population studies pave the way for developing such methods by showing some correlation between the Hounsfield Unit (HU) of BAT in CT and the corresponding [F]-FDG uptake in PET. In this study, we propose training convolutional neural networks (CNNs) to predict [F]-FDG uptake by BAT from unenhanced CT scans in the restricted regions that are likely to contain BAT. Using the Attention U-Net architecture, we perform experiments on datasets from four different cohorts, the largest study to date. We segment BAT regions using predicted [F]-FDG uptake values, achieving 23% to 40% better accuracy than conventional CT thresholding. Additionally, BAT volumes computed from the segmentations distinguish the subjects with and without active BAT with an AUC of 0.8, compared to 0.6 for CT thresholding. These findings suggest CNNs can facilitate large-scale imaging studies more efficiently and cost-effectively using only CT.

摘要

鉴定活跃棕色脂肪组织 (BAT) 的标准方法是 [F]-氟脱氧葡萄糖 ([F]-FDG) PET/CT 成像,但这种方法既昂贵又会使患者暴露在辐射下,因此不适合进行人群研究。可以使用从 CT 预测 BAT 对 [F]-FDG 摄取的计算方法来解决这些问题;早期的人群研究为开发此类方法铺平了道路,表明 CT 中 BAT 的亨氏单位 (HU) 与 PET 中的相应 [F]-FDG 摄取之间存在一定的相关性。在这项研究中,我们提出了使用卷积神经网络 (CNN) 从可能包含 BAT 的受限区域的未增强 CT 扫描中预测 BAT 的 [F]-FDG 摄取。我们使用注意力 U-Net 架构在来自四个不同队列的数据集上进行实验,这是迄今为止最大的研究。我们使用预测的 [F]-FDG 摄取值对 BAT 区域进行分割,比传统的 CT 阈值分割方法提高了 23%到 40%的准确性。此外,从分割中计算出的 BAT 体积可以区分有和无活跃 BAT 的受试者,AUC 为 0.8,而 CT 阈值分割为 0.6。这些发现表明,CNN 可以仅使用 CT 更高效、更具成本效益地促进大规模成像研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6882/11436835/ee54839b476a/41467_2024_52622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验