Kumar Nirjhar, Arora Ankit, Krishnan Ananth
Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
Sci Rep. 2024 Sep 27;14(1):22218. doi: 10.1038/s41598-024-72701-8.
We propose an optical read-out method for extracting faradaic current in electrochemical (EC) reactions and analyze its performance using opto-EC simulations. Our approach utilizes structured electrodes to generate composite optical vortex (COV) beams upon optical illumination. Through opto-EC simulations, we demonstrate that the EC reaction of 10 mM potassium ferricyanide induces a refractive index (RI) change, RI, of approximately RI units, leading to the rotation of the COV beam's intensity profile with a peak rotation of . This rotation's magnitude is proportional to RI, while the rate correlates with the faradaic current ( ) density responsible for RI. As the opto-EC information is from bulk RI, it remains unaffected by interfering non-faradaic components at the interface and is advantageous for studying intermediate species and bulk homogeneous reactions. Furthermore, as rotation depends on density rather than itself, this method proves beneficial in low scenarios, such as when employing micro-electrodes to decrease solution resistance or obtain localized EC data. Even in low density scenarios, like monitoring slow EC reactions, our method enables signal amplification by accumulating rotation over time. This interdisciplinary approach holds promise for advancing EC research and addressing critical challenges across various fields, including energy storage, corrosion protection, environmental remediation, and biomedical sciences.
我们提出了一种用于提取电化学(EC)反应中法拉第电流的光学读出方法,并使用光电化学模拟分析其性能。我们的方法利用结构化电极在光照下产生复合光学涡旋(COV)光束。通过光电化学模拟,我们证明10 mM铁氰化钾的EC反应会引起约 个折射率(RI)单位的变化,导致COV光束强度分布的旋转,峰值旋转为 。该旋转的幅度与 成正比,而速率与导致 的法拉第电流( )密度相关。由于光电化学信息来自体RI,它不受界面处干扰性非法拉第成分的影响,有利于研究中间物种和体相均相反应。此外,由于旋转取决于 密度而非 本身,该方法在低 场景中证明是有益的,例如当使用微电极降低溶液电阻或获取局部EC数据时。即使在低密度场景中,如监测缓慢的EC反应,我们的方法也能通过随时间累积旋转来实现信号放大。这种跨学科方法有望推动EC研究并应对包括能量存储、腐蚀防护、环境修复和生物医学科学在内的各个领域的关键挑战。