Suppr超能文献

基于卷积神经网络的在线手写阿尔茨海默病检测的可解释性。

Explainability of CNN-based Alzheimer's disease detection from online handwriting.

机构信息

Samovar/Télécom SudParis, Institut Polytechnique de Paris, 91120, Palaiseau, France.

AP-HP, Groupe Hospitalier Cochin Paris Centre, Hôpital Broca, Pôle Gérontologie, 75005, Paris, France.

出版信息

Sci Rep. 2024 Sep 27;14(1):22108. doi: 10.1038/s41598-024-72650-2.

Abstract

With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection. This paper addresses this challenge by interpreting predictions from a Convolutional Neural Network applied to multivariate time series data, generated by online handwriting data associated with continuous loop series handwritten on a graphical tablet. Our explainability methods reveal distinct motor behavior characteristics for healthy individuals and those diagnosed with Alzheimer's. Healthy subjects exhibited consistent, smooth movements, while Alzheimer's patients demonstrated erratic patterns marked by abrupt stops and direction changes. This emphasizes the critical role of explainability in translating complex models into clinically relevant insights. Our research contributes to the enhancement of early diagnosis, providing significant and reliable insights to stakeholders involved in patient care and intervention strategies. Our work bridges the gap between machine learning predictions and clinical insights, fostering a more effective and understandable application of advanced models for Alzheimer's disease assessment.

摘要

全球有超过 5500 万人受到痴呆症的影响,每年报告近 1000 万例新病例,阿尔茨海默病是一种普遍且具有挑战性的神经退行性疾病。尽管机器学习技术在阿尔茨海默病检测方面取得了重大进展,但深度学习模型的广泛采用引发了人们对其可解释性的担忧。在阿尔茨海默病检测的背景下,深度学习模型在线笔迹分析缺乏可解释性是文献中的一个关键空白。本文通过解释应用于多元时间序列数据的卷积神经网络的预测来解决这一挑战,这些数据是由与在图形平板电脑上连续循环系列手写相关的在线手写数据生成的。我们的可解释性方法揭示了健康个体和被诊断为阿尔茨海默病患者的不同运动行为特征。健康受试者表现出一致、流畅的运动,而阿尔茨海默病患者的运动模式则不规则,表现为突然停止和方向变化。这强调了可解释性在将复杂模型转化为临床相关见解方面的关键作用。我们的研究有助于早期诊断的提高,为参与患者护理和干预策略的利益相关者提供重要而可靠的见解。我们的工作弥合了机器学习预测和临床见解之间的差距,为阿尔茨海默病评估的先进模型的更有效和可理解的应用提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e0/11436813/bc1cc3d7d35a/41598_2024_72650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验