Suppr超能文献

采用多重插补法处理多阅读者多案例设计研究中的缺失数据。

Implementing multiple imputations for addressing missing data in multireader multicase design studies.

机构信息

Tongji University School of Medicine, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.

Department of Military Health Statistics, Naval Medical University, 800 Xiangyin Road, Yangpu District, Shanghai, 200433, China.

出版信息

BMC Med Res Methodol. 2024 Sep 27;24(1):217. doi: 10.1186/s12874-024-02321-3.

Abstract

BACKGROUND

In computer-aided diagnosis (CAD) studies utilizing multireader multicase (MRMC) designs, missing data might occur when there are instances of misinterpretation or oversight by the reader or problems with measurement techniques. Improper handling of these missing data can lead to bias. However, little research has been conducted on addressing the missing data issue within the MRMC framework.

METHODS

We introduced a novel approach that integrates multiple imputation with MRMC analysis (MI-MRMC). An elaborate simulation study was conducted to compare the efficacy of our proposed approach with that of the traditional complete case analysis strategy within the MRMC design. Furthermore, we applied these approaches to a real MRMC design CAD study on aneurysm detection via head and neck CT angiograms to further validate their practicality.

RESULTS

Compared with traditional complete case analysis, the simulation study demonstrated the MI-MRMC approach provides an almost unbiased estimate of diagnostic capability, alongside satisfactory performance in terms of statistical power and the type I error rate within the MRMC framework, even in small sample scenarios. In the real CAD study, the proposed MI-MRMC method further demonstrated strong performance in terms of both point estimates and confidence intervals compared with traditional complete case analysis.

CONCLUSION

Within MRMC design settings, the adoption of an MI-MRMC approach in the face of missing data can facilitate the attainment of unbiased and robust estimates of diagnostic capability.

摘要

背景

在利用多读者多病例(MRMC)设计的计算机辅助诊断(CAD)研究中,当读者出现误解或疏忽或测量技术出现问题时,可能会出现数据缺失的情况。如果对这些缺失数据处理不当,可能会导致偏差。然而,在 MRMC 框架内解决缺失数据问题的研究还很少。

方法

我们引入了一种新的方法,将多重插补与 MRMC 分析(MI-MRMC)相结合。我们进行了详细的模拟研究,以比较我们提出的方法与传统的 MRMC 设计中完整病例分析策略的效果。此外,我们将这些方法应用于头颈部 CT 血管造影术检测动脉瘤的真实 MRMC 设计 CAD 研究中,以进一步验证其实际应用。

结果

与传统的完整病例分析相比,模拟研究表明,MI-MRMC 方法提供了几乎无偏的诊断能力估计,同时在 MRMC 框架内具有令人满意的统计功效和Ⅰ类错误率性能,即使在小样本情况下也是如此。在真实的 CAD 研究中,与传统的完整病例分析相比,所提出的 MI-MRMC 方法在点估计和置信区间方面都表现出了更强的性能。

结论

在 MRMC 设计中,采用 MI-MRMC 方法处理缺失数据可以帮助获得无偏且稳健的诊断能力估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2139/11428558/28dbafb50bbd/12874_2024_2321_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验