Suppr超能文献

基于血液的 DNA 甲基化和暴露风险评分可高精度预测军人和平民队列中的 PTSD。

Blood-based DNA methylation and exposure risk scores predict PTSD with high accuracy in military and civilian cohorts.

机构信息

Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA.

Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.

出版信息

BMC Med Genomics. 2024 Sep 27;17(1):235. doi: 10.1186/s12920-024-02002-6.

Abstract

BACKGROUND

Incorporating genomic data into risk prediction has become an increasingly popular approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not.

METHODS

Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts.

RESULTS

The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p=0.006), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD.

CONCLUSION

The inclusion of exposure variables adds to the predictive power of MRS. Classification-based MRS may be useful in predicting risk of future PTSD in populations with anticipated trauma exposure. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting PTSD and, relatedly, improve their performance in independent cohorts.

摘要

背景

将基因组数据纳入风险预测已成为一种越来越流行的方法,可用于快速识别 PTSD 等复杂疾病风险最高的个体。我们的目标是开发和验证使用机器学习区分 PTSD 患者和非 PTSD 患者的甲基化风险评分 (MRS)。

方法

弹性网络用于使用包含可用血液衍生 DNA 甲基化 (DNAm) 的发现数据集 (n=1226;314 例,912 例对照) 开发三个风险评分模型,该数据集由 5 个具有不同来源的队列组成,在 Illumina Epic BeadChip 上进行测量。第一个风险评分,暴露和甲基化风险评分 (eMRS) 使用累积和儿童期创伤暴露和 DNAm 变量;第二个,仅基于 DNAm 数据的甲基化风险评分 (MoRS);第三个,调整暴露变量的甲基化仅风险评分 (MoRSAE),使用调整了两个暴露变量的 DNAm 数据。还评估了这些风险评分根据部署前数据预测未来 PTSD 的潜力。风险评分的外部验证在四个独立队列中进行。

结果

eMRS 模型使用 3730 个特征对 PTSD 进行分类,显示出最高的准确性 (92%)、精度 (91%)、召回率 (87%) 和 f1 得分 (89%)。虽然仍然非常准确,但 MoRS(准确性=89%)使用 3728 个特征和 MoRSAE(准确性=84%)使用 4150 个特征显示出分类能力下降。eMRS 显著预测了四个独立队列中的一个队列,BEAR 队列的 PTSD(beta=0.6839,p=0.006),但其余三个队列则不然。所有模型的部署前风险评分(eMRS,beta=1.92;MoRS,beta=1.99 和 MoRSAE,beta=1.77)均显示出对部署后 PTSD 的显著预测力(p<0.001)。

结论

纳入暴露变量可提高 MRS 的预测能力。基于分类的 MRS 可能有助于预测具有预期创伤暴露的人群未来 PTSD 的风险。随着更多数据的出现,包括额外的分子、环境和心理社会因素,这些评分的准确性可能会提高,从而提高其在独立队列中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdad/11429352/86dfda3e1002/12920_2024_2002_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验