Center for Geriatrics & Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan.
Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.
BMC Med Inform Decis Mak. 2024 Sep 27;24(1):270. doi: 10.1186/s12911-024-02684-z.
Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute illnesses.
We enrolled inpatients of the geriatric medicine ward at Taichung veterans general hospital between 2012 and 2022. We compared four ML models including logistic regression, random forest (RF), extreme gradient boosting, and support vector machine (SVM) for the prediction of frailty. The feature window as well as the prediction window was set as half a year before admission. Furthermore, Shapley additive explanation plots and partial dependence plots were used to identify Fried's frailty phenotype for interpreting the model across various levels including domain, feature, and individual aspects.
We enrolled 3367 patients. Of these, 2843 were frail. We used 21 features to train the prediction model. Of the 4 tested algorithms, SVM yielded the highest AUROC, precision and F1-score (78.05%, 94.53% and 82.10%). Of the 21 features, age, gender, multimorbidity frailty index, triage, hemoglobin, neutrophil ratio, estimated glomerular filtration rate, blood urea nitrogen, and potassium were identified as more impactful due to their absolute values.
Our results demonstrated that some easily accessed parameters from the hospital clinical data system can be used to predict frailty in older hospitalized patients using supervised ML methods.
早期识别虚弱患者并进行早期干预治疗可以最大限度地减少与虚弱相关的医疗负担。本研究探讨了使用机器学习(ML)来检测急性疾病住院老年患者的虚弱程度。
我们招募了 2012 年至 2022 年台中荣民总医院老年医学病房的住院患者。我们比较了包括逻辑回归、随机森林(RF)、极端梯度增强和支持向量机(SVM)在内的四种 ML 模型,用于预测虚弱。特征窗口和预测窗口设置为入院前半年。此外,使用 Shapley 加法解释图和部分依赖图来识别 Fried 虚弱表型,以跨域、特征和个体方面解释模型。
我们共纳入 3367 名患者,其中 2843 名为虚弱患者。我们使用 21 个特征来训练预测模型。在 4 种测试算法中,SVM 的 AUROC、精度和 F1 得分最高(78.05%、94.53%和 82.10%)。在 21 个特征中,年龄、性别、多重疾病虚弱指数、分诊、血红蛋白、中性粒细胞比、估计肾小球滤过率、血尿素氮和钾由于其绝对值而被认为更具影响力。
我们的结果表明,使用监督机器学习方法,可以使用来自医院临床数据系统的一些易于获取的参数来预测住院老年患者的虚弱程度。