Suppr超能文献

用于预测肝硬化住院患者多维衰弱的可解释机器学习模型的开发与验证

Development and validation of an explainable machine learning model for predicting multidimensional frailty in hospitalized patients with cirrhosis.

作者信息

Yang Fang, Li Chaoqun, Yang Wanting, He Yumei, Wu Liping, Jiang Kui, Sun Chao

机构信息

Department of Digestive System, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin 301800, China.

Department of Geriatrics, Tianjin Hexi Hospital, No.43 Qiongzhou Road, Hexi District, Tianjin 300202, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae491.

Abstract

We sought to develop and validate a machine learning (ML) model for predicting multidimensional frailty based on clinical and laboratory data. Moreover, an explainable ML model utilizing SHapley Additive exPlanations (SHAP) was constructed. This study enrolled 622 patients hospitalized due to decompensating episodes at a tertiary hospital. The cohort data were randomly divided into training and test sets. External validation was carried out using 131 patients from other tertiary hospitals. The frail phenotype was defined according to a self-reported questionnaire (Frailty Index). The area under the receiver operating characteristics curve was adopted to compare the performance of five ML models. The importance of the features and interpretation of the ML models were determined using the SHAP method. The proportions of cirrhotic patients with nonfrail and frail phenotypes in combined training and test sets were 87.8% and 12.2%, respectively, while they were 88.5% and 11.5% in the external validation dataset. Five ML algorithms were used, and the random forest (RF) model exhibited substantially predictive performance. Regarding the external validation, the RF algorithm outperformed other ML models. Moreover, the SHAP method demonstrated that neutrophil-to-lymphocyte ratio, age, lymphocyte-to-monocyte ratio, ascites, and albumin served as the most important predictors for frailty. At the patient level, the SHAP force plot and decision plot exhibited a clinically meaningful explanation of the RF algorithm. We constructed an ML model (RF) providing accurate prediction of frail phenotype in decompensated cirrhosis. The explainability and generalizability may foster clinicians to understand contributors to this physiologically vulnerable situation and tailor interventions.

摘要

我们试图开发并验证一种基于临床和实验室数据预测多维衰弱的机器学习(ML)模型。此外,构建了一种利用SHapley加法解释(SHAP)的可解释ML模型。本研究纳入了一家三级医院因失代偿发作而住院的622例患者。队列数据被随机分为训练集和测试集。使用来自其他三级医院的131例患者进行外部验证。衰弱表型根据自我报告问卷(衰弱指数)定义。采用受试者工作特征曲线下面积来比较五个ML模型的性能。使用SHAP方法确定特征的重要性和ML模型的解释。在合并的训练集和测试集中,非衰弱和衰弱表型的肝硬化患者比例分别为87.8%和12.2%,而在外部验证数据集中分别为88.5%和11.5%。使用了五种ML算法,随机森林(RF)模型表现出显著的预测性能。关于外部验证,RF算法优于其他ML模型。此外,SHAP方法表明中性粒细胞与淋巴细胞比值、年龄、淋巴细胞与单核细胞比值、腹水和白蛋白是衰弱的最重要预测因素。在患者层面,SHAP力图和决策图对RF算法进行了具有临床意义的解释。我们构建了一个ML模型(RF),可准确预测失代偿期肝硬化患者的衰弱表型。其可解释性和可推广性可能有助于临床医生理解导致这种生理脆弱状况的因素并制定针对性干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ef/11446601/7d7e3ae93024/bbae491f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验