Suppr超能文献

一种基于集成和多任务注意力模型的用于预测药物组合协同作用的多视图特征表示。

A multi-view feature representation for predicting drugs combination synergy based on ensemble and multi-task attention models.

作者信息

Monem Samar, Hassanien Aboul Ella, Abdel-Hamid Alaa H

机构信息

Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.

Faculty of Computer and AI, Cairo University, Cairo, Egypt.

出版信息

J Cheminform. 2024 Sep 27;16(1):110. doi: 10.1186/s13321-024-00903-3.

Abstract

This paper proposes a novel multi-view ensemble predictor model that is designed to address the challenge of determining synergistic drug combinations by predicting both the synergy score value values and synergy class label of drug combinations with cancer cell lines. The proposed methodology involves representing drug features through four distinct views: Simplified Molecular-Input Line-Entry System (SMILES) features, molecular graph features, fingerprint features, and drug-target features. On the other hand, cell line features are captured through four views: gene expression features, copy number features, mutation features, and proteomics features. To prevent overfitting of the model, two techniques are employed. First, each view feature of a drug is paired with each corresponding cell line view and input into a multi-task attention deep learning model. This multi-task model is trained to simultaneously predict both the synergy score value and synergy class label. This process results in sixteen input view features being fed into the multi-task model, producing sixteen prediction values. Subsequently, these prediction values are utilized as inputs for an ensemble model, which outputs the final prediction value. The 'MVME' model is assessed using the O'Neil dataset, which includes 38 distinct drugs combined across 39 distinct cancer cell lines to output 22,737 drug combination pairs. For the synergy score value, the proposed model scores a mean square error (MSE) of 206.57, a root mean square error (RMSE) of 14.30, and a Pearson score of 0.76. For the synergy class label, the model scores 0.90 for accuracy, 0.96 for precision, 0.57 for kappa, 0.96 for the area under the ROC curve (ROC-AUC), and 0.88 for the area under the precision-recall curve (PR-AUC).

摘要

本文提出了一种新颖的多视图集成预测模型,旨在通过预测药物与癌细胞系组合的协同分数值和协同类别标签来应对确定协同药物组合的挑战。所提出的方法涉及通过四个不同的视图来表示药物特征:简化分子输入线性条目系统(SMILES)特征、分子图特征、指纹特征和药物靶点特征。另一方面,细胞系特征通过四个视图来捕获:基因表达特征、拷贝数特征、突变特征和蛋白质组学特征。为了防止模型过拟合,采用了两种技术。首先,将药物的每个视图特征与每个相应的细胞系视图配对,并输入到多任务注意力深度学习模型中。该多任务模型经过训练,可同时预测协同分数值和协同类别标签。这一过程导致16个输入视图特征被输入到多任务模型中,产生16个预测值。随后,这些预测值被用作集成模型的输入,该模型输出最终的预测值。使用奥尼尔数据集对“MVME”模型进行评估,该数据集包括38种不同的药物与39种不同的癌细胞系组合,以输出22737个药物组合对。对于协同分数值,所提出的模型的均方误差(MSE)为206.57,均方根误差(RMSE)为14.30,皮尔逊分数为0.76。对于协同类别标签,该模型的准确率为0.90,精确率为0.96,kappa值为0.57,ROC曲线下面积(ROC-AUC)为0.96,精确率-召回率曲线下面积(PR-AUC)为0.88。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3120/11438216/64ee3afec1b6/13321_2024_903_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验