Suppr超能文献

基于深度学习的多药协同预测模型,用于个性化定制抗癌疗法。

Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies.

作者信息

She Shengnan, Chen Hengwei, Ji Wei, Sun Mengqiu, Cheng Jiaxi, Rui Mengjie, Feng Chunlai

机构信息

Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China.

出版信息

Front Pharmacol. 2022 Dec 15;13:1032875. doi: 10.3389/fphar.2022.1032875. eCollection 2022.

Abstract

While synergistic drug combinations are more effective at fighting tumors with complex pathophysiology, preference compensating mechanisms, and drug resistance, the identification of novel synergistic drug combinations, especially complex higher-order combinations, remains challenging due to the size of combination space. Even though certain computational methods have been used to identify synergistic drug combinations of traditional and screening tests, the majority of previously published work has focused on predicting synergistic drug pairs for specific types of cancer and paid little attention to the sophisticated high-order combinations. The main objective of this study is to develop a deep learning-based approach that integrated multi-omics data to predict novel synergistic multi-drug combinations (DeepMDS) in a given cell line. To develop this approach, we firstly created a dataset comprising of gene expression profiles of cancer cell lines, target information of anti-cancer drugs, and drug response against a large variety of cancer cell lines. Based on the principle of a fully connected feed forward Deep Neural Network, the proposed model was constructed using this dataset, which achieved a high performance with a Mean Square Error (MSE) of 2.50 and a Root Mean Squared Error (RMSE) of 1.58 in the regression task, and gave the best classification accuracy of 0.94, an area under the Receiver Operating Characteristic curve (AUC) of 0.97, a sensitivity of 0.95, and a specificity of 0.93. Furthermore, we utilized three breast cancer cell subtypes (MCF-7, MDA-MD-468 and MDA-MB-231) and one lung cancer cell line A549 to validate the predicted results of our model, showing that the predicted top-ranked multi-drug combinations had superior anti-cancer effects to other combinations, particularly those that were widely used in clinical treatment. Our model has the potential to increase the practicality of expanding the drug combinational space and to leverage its capacity to prioritize the most effective multi-drug combinational therapy for precision oncology applications.

摘要

虽然协同药物组合在对抗具有复杂病理生理学、偏好补偿机制和耐药性的肿瘤方面更有效,但由于组合空间的规模,鉴定新型协同药物组合,尤其是复杂的高阶组合,仍然具有挑战性。尽管已经使用了某些计算方法来鉴定传统和筛选试验的协同药物组合,但大多数先前发表的工作都集中在预测特定类型癌症的协同药物对,而很少关注复杂的高阶组合。本研究的主要目标是开发一种基于深度学习的方法,该方法整合多组学数据以预测给定细胞系中的新型协同多药组合(DeepMDS)。为了开发这种方法,我们首先创建了一个数据集,该数据集包括癌细胞系的基因表达谱、抗癌药物的靶点信息以及对多种癌细胞系的药物反应。基于全连接前馈深度神经网络的原理,使用该数据集构建了所提出的模型,该模型在回归任务中实现了高性能,均方误差(MSE)为2.50,均方根误差(RMSE)为1.58,并给出了最佳分类准确率0.94,受试者工作特征曲线(AUC)下面积为0.97,灵敏度为0.95,特异性为0.93。此外,我们利用三种乳腺癌细胞亚型(MCF-7、MDA-MD-468和MDA-MB-231)和一种肺癌细胞系A549来验证我们模型的预测结果,表明预测的排名靠前的多药组合比其他组合具有更好的抗癌效果,特别是那些在临床治疗中广泛使用的组合。我们的模型有可能提高扩大药物组合空间的实用性,并利用其能力为精准肿瘤学应用优先选择最有效的多药联合治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5809/9797718/503965fb408c/fphar-13-1032875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验