Suppr超能文献

利用原发性头颈癌计算机断层扫描和荧光寿命成像技术早期检测淋巴结转移

Early Detection of Lymph Node Metastasis Using Primary Head and Neck Cancer Computed Tomography and Fluorescence Lifetime Imaging.

作者信息

Yuan Nimu, Hassan Mohamed A, Ehrlich Katjana, Weyers Brent W, Biddle Garrick, Ivanovic Vladimir, Raslan Osama A A, Gui Dorina, Abouyared Marianne, Bewley Arnaud F, Birkeland Andrew C, Farwell D Gregory, Marcu Laura, Qi Jinyi

机构信息

Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.

Department of Radiology-Neuroradiology, University of California, Davis, CA 95817, USA.

出版信息

Diagnostics (Basel). 2024 Sep 23;14(18):2097. doi: 10.3390/diagnostics14182097.

Abstract

: Early detection and accurate diagnosis of lymph node metastasis (LNM) in head and neck cancer (HNC) are crucial for enhancing patient prognosis and survival rates. Current imaging methods have limitations, necessitating new evaluation of new diagnostic techniques. This study investigates the potential of combining pre-operative CT and intra-operative fluorescence lifetime imaging (FLIm) to enhance LNM prediction in HNC using primary tumor signatures. : CT and FLIm data were collected from 46 HNC patients. A total of 42 FLIm features and 924 CT radiomic features were extracted from the primary tumor site and fused. A support vector machine (SVM) model with a radial basis function kernel was trained to predict LNM. Hyperparameter tuning was conducted using 10-fold nested cross-validation. Prediction performance was evaluated using balanced accuracy (bACC) and the area under the ROC curve (AUC). : The model, leveraging combined CT and FLIm features, demonstrated improved testing accuracy (bACC: 0.71, AUC: 0.79) over the CT-only (bACC: 0.58, AUC: 0.67) and FLIm-only (bACC: 0.61, AUC: 0.72) models. Feature selection identified that a subset of 10 FLIm and 10 CT features provided optimal predictive capability. Feature contribution analysis identified high-pass and low-pass wavelet-filtered CT images as well as Laguerre coefficients from FLIm as key predictors. : Combining CT and FLIm of the primary tumor improves the prediction of HNC LNM compared to either modality alone. Significance: This study underscores the potential of combining pre-operative radiomics with intra-operative FLIm for more accurate LNM prediction in HNC, offering promise to enhance patient outcomes.

摘要

头颈部癌(HNC)中淋巴结转移(LNM)的早期检测和准确诊断对于改善患者预后和生存率至关重要。当前的成像方法存在局限性,因此有必要对新的诊断技术进行重新评估。本研究调查了术前CT与术中荧光寿命成像(FLIm)相结合利用原发肿瘤特征增强HNC中LNM预测的潜力。:从46例HNC患者收集了CT和FLIm数据。从原发肿瘤部位提取并融合了总共42个FLIm特征和924个CT放射组学特征。训练了具有径向基函数核的支持向量机(SVM)模型来预测LNM。使用10倍嵌套交叉验证进行超参数调整。使用平衡准确度(bACC)和ROC曲线下面积(AUC)评估预测性能。:该模型利用CT和FLIm的组合特征,与仅使用CT(bACC:0.58,AUC:0.67)和仅使用FLIm(bACC:0.61,AUC:0.72)的模型相比,显示出更高的测试准确度(bACC:0.71,AUC:0.79)。特征选择确定10个FLIm特征和10个CT特征的子集提供了最佳预测能力。特征贡献分析确定高通和低通小波滤波CT图像以及来自FLIm的拉盖尔系数是关键预测因子。:与单独使用任何一种模态相比,原发肿瘤的CT和FLIm相结合可改善HNC LNM的预测。意义:本研究强调了术前放射组学与术中FLIm相结合在HNC中更准确地预测LNM的潜力,有望改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cab/11430879/09390b7bb102/diagnostics-14-02097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验