文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过体内和体外模型研究唾液酸在减轻急性肺损伤中的作用及机制

Role and Mechanism of Sialic Acid in Alleviating Acute Lung Injury through In Vivo and In Vitro Models.

作者信息

Li Dan, Li Fangyan, Zhou Yaping, Tang Yiping, Hu Zuomin, Wu Qi, Xie Tiantian, Lin Qinlu, Wang Hanqing, Luo Feijun

机构信息

Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

出版信息

Foods. 2024 Sep 20;13(18):2984. doi: 10.3390/foods13182984.


DOI:10.3390/foods13182984
PMID:39335912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11431537/
Abstract

Excessive inflammatory reactions are the most important pathological injury factor in acute lung injury (ALI). Our recent study found that sialic acid had an anti-colitis effect. In this study, the effect of sialic acid (SA) on acute lung inflammation was investigated. A lipopolysaccharide (LPS)-induced ALI animal model and LPS-stimulated HUVEC cell model were used to evaluate the anti-inflammatory effect of SA and study its molecular mechanisms. Compared with the LPS group, the lung index of the SA group decreased from 0.79 ± 0.05% to 0.58 ± 0.06% (LPS + 50 SA) and 0.62 ± 0.02% (LPS + 100 SA), with < 0.01, suggesting that SA could improve the pulmonary edema of mice and alleviate LPS-induced lung injury. Transcriptome research identified 26 upregulated genes and 25 downregulated genes involved in the protection of SA against ALI. These genes are mainly related to the MAPK and NF-κB signaling pathways. Our study also proved that SA markedly downregulated the expression of inflammatory factors and blocked the JNK/p38/PPAR-γ/NF-κB pathway. Meanwhile, SA treatment also upregulated the expression of HO-1 and NQO1 in ALI mice. In vitro, SA obviously repressed the expressions of inflammatory cytokines and the JNK/p38-NF-κB/AP-1 pathway. SA also regulated the expression of oxidative stress-related genes through the Nrf2 pathway. Taken together, SA exhibits a protective role by modulating the anti-inflammatory and anti-oxidation pathways in ALI, and it may be a promising candidate for functional foods to prevent ALI.

摘要

过度的炎症反应是急性肺损伤(ALI)中最重要的病理损伤因素。我们最近的研究发现,唾液酸具有抗结肠炎作用。在本研究中,研究了唾液酸(SA)对急性肺炎症的影响。使用脂多糖(LPS)诱导的ALI动物模型和LPS刺激的人脐静脉内皮细胞(HUVEC)模型来评估SA的抗炎作用并研究其分子机制。与LPS组相比,SA组的肺指数从0.79±0.05%降至0.58±0.06%(LPS + 50 SA)和0.62±0.02%(LPS + 100 SA),P < 0.01,表明SA可改善小鼠肺水肿并减轻LPS诱导的肺损伤。转录组研究确定了26个上调基因和25个下调基因参与SA对ALI的保护作用。这些基因主要与丝裂原活化蛋白激酶(MAPK)和核因子κB(NF-κB)信号通路相关。我们的研究还证明,SA显著下调炎症因子的表达并阻断JNK/p38/过氧化物酶体增殖物激活受体γ(PPAR-γ)/NF-κB通路。同时,SA处理还上调了ALI小鼠中血红素加氧酶-1(HO-1)和醌氧化还原酶1(NQO1)的表达。在体外,SA明显抑制炎症细胞因子的表达以及JNK/p38-NF-κB/活化蛋白-1(AP-1)通路。SA还通过核因子E2相关因子2(Nrf2)通路调节氧化应激相关基因的表达。综上所述,SA通过调节ALI中的抗炎和抗氧化途径发挥保护作用,它可能是预防ALI的功能性食品的一个有前景的候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/6667226fa740/foods-13-02984-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/35d8bac7e1bb/foods-13-02984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/b8af302bf526/foods-13-02984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/786858ae8e04/foods-13-02984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/97bf211b49ef/foods-13-02984-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/7b07d72be854/foods-13-02984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/855de3a2e645/foods-13-02984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/c8da53d34f1a/foods-13-02984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/8fe9182dcf71/foods-13-02984-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/9103fe6d1c86/foods-13-02984-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/ee69e3fb440a/foods-13-02984-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/cc3e38894825/foods-13-02984-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/9b12767f2e4b/foods-13-02984-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/6667226fa740/foods-13-02984-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/35d8bac7e1bb/foods-13-02984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/b8af302bf526/foods-13-02984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/786858ae8e04/foods-13-02984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/97bf211b49ef/foods-13-02984-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/7b07d72be854/foods-13-02984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/855de3a2e645/foods-13-02984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/c8da53d34f1a/foods-13-02984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/8fe9182dcf71/foods-13-02984-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/9103fe6d1c86/foods-13-02984-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/ee69e3fb440a/foods-13-02984-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/cc3e38894825/foods-13-02984-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/9b12767f2e4b/foods-13-02984-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a98/11431537/6667226fa740/foods-13-02984-g013.jpg

相似文献

[1]
Role and Mechanism of Sialic Acid in Alleviating Acute Lung Injury through In Vivo and In Vitro Models.

Foods. 2024-9-20

[2]
Syringic acid attenuates acute lung injury by modulating macrophage polarization in LPS-induced mice.

Phytomedicine. 2024-7

[3]
Total terpenoids of Inula japonica activated the Nrf2 receptor to alleviate the inflammation and oxidative stress in LPS-induced acute lung injury.

Phytomedicine. 2022-12

[4]
Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway.

Phytomedicine. 2022-7

[5]
23-O-acetylshengmanol-3-O-α-L-arabinoside alleviates lipopolysaccharide-induced acute lung injury through inhibiting IκB/NF-κB and MAPK/AP-1 signaling pathways.

J Ethnopharmacol. 2023-1-10

[6]
Downregulated microRNA-27b attenuates lipopolysaccharide-induced acute lung injury via activation of NF-E2-related factor 2 and inhibition of nuclear factor κB signaling pathway.

J Cell Physiol. 2018-12-24

[7]
Salecan ameliorates LPS-induced acute lung injury through regulating Keap1-Nrf2/HO-1 pathway in mice.

Int Immunopharmacol. 2024-2-15

[8]
Ethanol extracts of Rhaponticum uniflorum (L.) DC inflorescence ameliorate LPS-mediated acute lung injury by alleviating inflammatory responses via the Nrf2/HO-1 signaling pathway.

J Ethnopharmacol. 2022-10-5

[9]
Salvianolactone acid A isolated from Salvia miltiorrhiza ameliorates lipopolysaccharide-induced acute lung injury in mice by regulating PPAR-γ.

Phytomedicine. 2022-10

[10]
Sappanone A ameliorates acute lung injury through inhibiting the activation of the NF-κB signaling pathway.

Toxicol Appl Pharmacol. 2024-11

本文引用的文献

[1]
Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp.

Imeta. 2023-5-8

[2]
TNF superfamily control of tissue remodeling and fibrosis.

Front Immunol. 2023

[3]
Xuanfei Baidu formula alleviates impaired mitochondrial dynamics and activated NLRP3 inflammasome by repressing NF-κB and MAPK pathways in LPS-induced ALI and inflammation models.

Phytomedicine. 2023-1

[4]
Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system.

Redox Biol. 2022-11

[5]
ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis.

Stem Cell Res Ther. 2022-10-4

[6]
23-O-acetylshengmanol-3-O-α-L-arabinoside alleviates lipopolysaccharide-induced acute lung injury through inhibiting IκB/NF-κB and MAPK/AP-1 signaling pathways.

J Ethnopharmacol. 2023-1-10

[7]
FGF1 alleviates LPS-induced acute lung injury via suppression of inflammation and oxidative stress.

Mol Med. 2022-6-28

[8]
Sorafenib inhibits LPS-induced inflammation by regulating Lyn-MAPK-NF-kB/AP-1 pathway and TLR4 expression.

Cell Death Discov. 2022-6-9

[9]
Pathogenesis of pneumonia and acute lung injury.

Clin Sci (Lond). 2022-5-27

[10]
Flavonoids as Potential Anti-Inflammatory Molecules: A Review.

Molecules. 2022-5-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索