Suppr超能文献

SpemNet:一种基于高效多尺度注意力和堆叠图像块嵌入的棉花病虫害识别方法。

SpemNet: A Cotton Disease and Pest Identification Method Based on Efficient Multi-Scale Attention and Stacking Patch Embedding.

作者信息

Qiu Keyuan, Zhang Yingjie, Ren Zekai, Li Meng, Wang Qian, Feng Yiqiang, Chen Feng

机构信息

College of Information Science and Technology, Shihezi University, Shihezi 832003, China.

Department of Computer Science, University of York, Heslington YO10 5DD, UK.

出版信息

Insects. 2024 Sep 2;15(9):667. doi: 10.3390/insects15090667.

Abstract

We propose a cotton pest and disease recognition method, SpemNet, based on efficient multi-scale attention and stacking patch embedding. By introducing the SPE module and the EMA module, we successfully solve the problems of local feature learning difficulty and insufficient multi-scale feature integration in the traditional Vision Transformer model, which significantly improve the performance and efficiency of the model. In our experiments, we comprehensively validate the SpemNet model on the CottonInsect dataset, and the results show that SpemNet performs well in the cotton pest recognition task, with significant effectiveness and superiority. The SpemNet model excels in key metrics such as precision and F1 score, demonstrating significant potential and superiority in the cotton pest and disease recognition task. This study provides an efficient and reliable solution in the field of cotton pest and disease identification, which is of great theoretical and applied significance.

摘要

我们提出了一种基于高效多尺度注意力和堆叠补丁嵌入的棉花病虫害识别方法SpemNet。通过引入SPE模块和EMA模块,我们成功解决了传统视觉Transformer模型中局部特征学习困难和多尺度特征整合不足的问题,显著提高了模型的性能和效率。在我们的实验中,我们在CottonInsect数据集上全面验证了SpemNet模型,结果表明SpemNet在棉花害虫识别任务中表现良好,具有显著的有效性和优越性。SpemNet模型在精度和F1分数等关键指标上表现出色,在棉花病虫害识别任务中显示出显著的潜力和优越性。本研究为棉花病虫害识别领域提供了一种高效可靠的解决方案,具有重要的理论和应用意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35c1/11432209/a6c0fbcc764c/insects-15-00667-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验