Suppr超能文献

资源高效型棉花网络:一种用于棉花病虫害分类的轻量级深度学习框架。

Resource-Efficient Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification.

作者信息

Wang Zhengle, Zhang Heng-Wei, Dai Ying-Qiang, Cui Kangning, Wang Haihua, Chee Peng W, Wang Rui-Feng

机构信息

College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China.

College of Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China.

出版信息

Plants (Basel). 2025 Jul 7;14(13):2082. doi: 10.3390/plants14132082.

Abstract

Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests-thus supporting the development of effective control strategies and facilitating genetic breeding research-we propose a lightweight model, the Resource-efficient Cotton Network (RF-Cott-Net), alongside an open-source image dataset, CCDPHD-11, encompassing 11 disease categories. Built upon the MobileViTv2 backbone, RF-Cott-Net integrates an early exit mechanism and quantization-aware training (QAT) to enhance deployment efficiency without sacrificing accuracy. Experimental results on CCDPHD-11 demonstrate that RF-Cott-Net achieves an accuracy of 98.4%, an F1-score of 98.4%, a precision of 98.5%, and a recall of 98.3%. With only 4.9 M parameters, 310 M FLOPs, an inference time of 3.8 ms, and a storage footprint of just 4.8 MB, RF-Cott-Net delivers outstanding accuracy and real-time performance, making it highly suitable for deployment on agricultural edge devices and providing robust support for in-field automated detection of cotton diseases and pests.

摘要

棉花是全球种植最广泛的天然纤维作物,但它极易受到各种病虫害的影响,这些病虫害会严重影响产量和质量。为了能够快速准确地诊断棉花病虫害,从而支持制定有效的防治策略并促进遗传育种研究,我们提出了一种轻量级模型——资源高效棉花网络(RF-Cott-Net),以及一个包含11种病害类别的开源图像数据集CCDPHD-11。基于MobileViTv2主干构建,RF-Cott-Net集成了早期退出机制和量化感知训练(QAT),以在不牺牲准确性的情况下提高部署效率。在CCDPHD-11上的实验结果表明,RF-Cott-Net的准确率为98.4%,F1分数为98.4%,精确率为98.5%,召回率为98.3%。RF-Cott-Net仅有490万个参数、3.1亿次浮点运算、3.8毫秒的推理时间以及仅4.8兆字节的存储占用空间,却具有出色的准确性和实时性能,非常适合部署在农业边缘设备上,为田间棉花病虫害的自动检测提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30d/12252015/8f2ed1cbe6c6/plants-14-02082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验