Sipos Tamás, Orsi-Gibicsár Szilvia, Schieszl Tamás, Donkó Tamás, Zakk Zsombor, Farkas Sándor, Binder Antal, Keszthelyi Sándor
Department of Agronomy, Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, S. Guba Str. 40, H-7400 Kaposvár, Hungary.
Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, H-7400 Kaposvár, Hungary.
Insects. 2024 Sep 13;15(9):693. doi: 10.3390/insects15090693.
The is the most significant bee parasite and the greatest threat to bee health all around the world. Due to its hidden lifestyle, detection within the brood cell is only possible through invasive techniques. Enhancing detection methods is essential for advancing research on population dynamics, spread, selection efforts, and control methodologies against the mite. In our study, we employed infrared imaging to measure the thermal differences in parasite and intact worker broods. Experiments were conducted over two years at the MATE Kaposvár Campus in Hungary involving five beehives in 2022 and five beehives in 2023. A FLIR E5-XT WIFI handheld infrared camera was used to create a heat map of capped brood frames. Our results indicate that the resolution of these cameras is sufficient to provide detailed IR images of a bee colony, making them suitable to detect temperature differences in intact and parasitized capped brood cells. Mite parasitism causes a time-dependent and sustained temperature increase in developing bee pupae, observable regardless of mite number. Our work demonstrates two different heating patterns: hotspot heating and heating cells that are responsible for the elevated temperature of the Varroa-infested cells as a social fever response by the worker bees. Based on our results, future research combined with AI-based image evaluation software could offer beekeepers and researchers practical and valuable tools for high-throughput, non-invasive detection in the field.
该螨是最重要的蜜蜂寄生虫,也是全球蜜蜂健康面临的最大威胁。由于其隐匿的生活方式,只有通过侵入性技术才能在育虫室中检测到它。改进检测方法对于推进关于该螨的种群动态、传播、选育工作及防治方法的研究至关重要。在我们的研究中,我们利用红外成像来测量寄生虫感染的和未感染的工蜂育虫的热差异。实验在匈牙利卡波什堡校区的MATE进行,为期两年,2022年涉及五个蜂箱,2023年也涉及五个蜂箱。使用FLIR E5-XT WIFI手持式红外相机创建封盖子脾框架的热图。我们的结果表明,这些相机的分辨率足以提供蜂群的详细红外图像,使其适合检测未感染和感染瓦螨的封盖子脾细胞中的温度差异。瓦螨寄生会导致发育中的蜜蜂蛹出现随时间变化的持续温度升高,无论螨的数量多少都可观察到。我们的工作展示了两种不同的加热模式:热点加热和负责受瓦螨感染细胞温度升高的加热细胞,这是工蜂的一种群体发热反应。基于我们的结果,未来结合基于人工智能的图像评估软件的研究可为养蜂人和研究人员提供用于现场高通量、非侵入性检测的实用且有价值的工具。