文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

异源四倍体棉中基因表达进化的翻译调控

Translational Regulation of Duplicated Gene Expression Evolution in Allopolyploid Cotton.

机构信息

College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.

出版信息

Genes (Basel). 2024 Aug 27;15(9):1130. doi: 10.3390/genes15091130.


DOI:10.3390/genes15091130
PMID:39336721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11431062/
Abstract

Polyploidy, a prevalent event in plant evolution, drives phenotypic diversification and speciation. While transcriptional changes and regulation in polyploids have been extensively studied, the translational level impact remains largely unexplored. To address this gap, we conducted a comparative transcriptomic and translatomic analysis of cotton leaves from allopolyploid species (AD) and (AD) relative to their model A-genome and D-genome diploid progenitors. Our data revealed that while allopolyploidization significantly affects the transcriptional landscape, its impact on translation was relatively modest, evidenced by a narrower expression range and fewer expression changes in ribosome-protected fragments than in mRNA levels. Allopolyploid-specific changes commonly identified in both AD and AD were observed in 7393 genes at either transcriptional or translational levels. Interestingly, the majority of translational changes exhibited concordant down-regulation in both ribosome-protected fragments and mRNA, particularly associated with terpenoid synthesis and metabolism (352 genes). Regarding translational efficiency (TE), at least one-fifth of cotton genes exhibit translational level regulation, with a general trend of more down-regulation (13.9-15.1%) than up-regulation (7.3-11.2%) of TE. The magnitude of translational regulation was slightly reduced in allopolyploids compared with diploids, and allopolyploidy tends to have a more profound impact on genes and functional associations with ultra-low TE. Moreover, we demonstrated a reduced extent of homeolog expression biases during translation compared with transcription. Our study provides insights into the regulatory consequences of allopolyploidy post-transcription, contributing to a comprehensive understanding of regulatory mechanisms of duplicated gene expression evolution.

摘要

多倍体是植物进化中的一种普遍现象,它驱动了表型多样化和物种形成。虽然多倍体的转录变化和调控已经得到了广泛的研究,但翻译水平的影响在很大程度上仍未被探索。为了解决这一差距,我们对异源多倍体物种(AD 和 AD)的棉花叶片进行了比较转录组学和转译组学分析,相对于它们的 A 基因组和 D 基因组二倍体祖先。我们的数据表明,虽然多倍体化显著影响转录景观,但它对翻译的影响相对较小,这表现在核糖体保护片段的表达范围比 mRNA 水平更窄,表达变化更少。在转录或翻译水平上,AD 和 AD 中共同观察到的异源多倍体特异性变化发生在 7393 个基因中。有趣的是,大多数翻译变化在核糖体保护片段和 mRNA 中都表现出一致的下调,特别是与萜类化合物合成和代谢相关的基因(352 个)。关于翻译效率(TE),至少有五分之一的棉花基因表现出翻译水平的调控,TE 的下调(13.9-15.1%)普遍多于上调(7.3-11.2%)。与二倍体相比,多倍体的翻译调控幅度略小,多倍体往往对 TE 极低的基因和功能关联有更深远的影响。此外,我们证明了在翻译过程中同源基因表达偏倚的程度比转录过程要小。我们的研究提供了多倍体后转录调控后果的见解,有助于全面理解重复基因表达进化的调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/b3dce984347c/genes-15-01130-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/12cc98e58eeb/genes-15-01130-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/db8b0f909456/genes-15-01130-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/f02ed8afc338/genes-15-01130-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/5b9854679975/genes-15-01130-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/b3dce984347c/genes-15-01130-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/12cc98e58eeb/genes-15-01130-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/db8b0f909456/genes-15-01130-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/f02ed8afc338/genes-15-01130-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/5b9854679975/genes-15-01130-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b7d/11431062/b3dce984347c/genes-15-01130-g005.jpg

相似文献

[1]
Translational Regulation of Duplicated Gene Expression Evolution in Allopolyploid Cotton.

Genes (Basel). 2024-8-27

[2]
Parental legacy versus regulatory innovation in salt stress responsiveness of allopolyploid cotton (Gossypium) species.

Plant J. 2022-8

[3]
Duplicate gene evolution, homoeologous recombination, and transcriptome characterization in allopolyploid cotton.

BMC Genomics. 2012-7-6

[4]
Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation.

New Phytol. 2009-11-19

[5]
Evolutionary Conservation and Divergence of Gene Coexpression Networks in Gossypium (Cotton) Seeds.

Genome Biol Evol. 2016-12-1

[6]
Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium).

Planta. 2021-8-30

[7]
Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton.

Mol Biol Evol. 2024-5-3

[8]
Gene-expression novelty in allopolyploid cotton: a proteomic perspective.

Genetics. 2015-5

[9]
Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium).

Genetics. 2009-6

[10]
Polyploidy and the petal transcriptome of Gossypium.

BMC Plant Biol. 2014-1-6

本文引用的文献

[1]
Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp.

Imeta. 2023-5-8

[2]
Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton.

Mol Biol Evol. 2024-5-3

[3]
Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress.

Hortic Res. 2023-5-19

[4]
Dynamic Translational Landscape Revealed by Genome-Wide Ribosome Profiling under Drought and Heat Stress in Potato.

Plants (Basel). 2023-6-6

[5]
Transcriptional and translational landscape fine-tune genome annotation and explores translation control in cotton.

J Adv Res. 2024-4

[6]
Ribosome profiling reveals the translational landscape and allele-specific translational efficiency in rice.

Plant Commun. 2023-3-13

[7]
Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice.

BMC Genomics. 2021-8-12

[8]
Polyploidy: an evolutionary and ecological force in stressful times.

Plant Cell. 2021-3-22

[9]
Ribosome profiling reveals the effects of nitrogen application translational regulation of yield recovery after abrupt drought-flood alternation in rice.

Plant Physiol Biochem. 2020-7-22

[10]
One subgenome to rule them all: underlying mechanisms of subgenome dominance.

Curr Opin Plant Biol. 2020-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索