Balfagón Damián, Zandalinas Sara I, Dos Reis de Oliveira Tadeu, Santa-Catarina Claudete, Gómez-Cadenas Aurelio
Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain.
Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil.
Hortic Res. 2023 May 19;10(7):uhad107. doi: 10.1093/hr/uhad107. eCollection 2023 Jul.
Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses. Here, by comparing transcriptomic and proteomic profiles to different abiotic stress combinations in two citrus genotypes, Carrizo citrange () and Cleopatra mandarin (), with contrasting tolerance to different abiotic stresses, we revealed key responses to the triple combination of heat stress, high irradiance and drought. The specific transcriptomic response to this stress combination in Carrizo was directed to regulate RNA metabolic pathways and translation processes, potentially conferring an advantage with respect to Cleopatra. In addition, we found endoplasmic reticulum stress response as common to all individual and combined stress conditions in both genotypes and identified the accumulation of specific groups of heat shock proteins (HSPs), such as small HSPs and HSP70s, and regulators of the unfolded protein response, BiP2 and PDIL2-2, as possible factors involved in citrus tolerance to triple stress combination. Taken together, our findings provide new insights into the acclimation process of citrus plants to multiple stress combination, necessary for increasing crop tolerance to the changing climatic conditions.
全球变暖和人类活动导致的环境变化增加了植物面临的胁迫条件的强度和频率。多种非生物因素同时作用会增强胁迫压力,并大幅降低植物的生长、产量和存活率。胁迫组合会导致特定的胁迫状况,从而引发特定的植物反应,这种反应不同于对单个胁迫的反应之和。在此,通过比较两种对不同非生物胁迫具有不同耐受性的柑橘基因型——卡里佐枳橙(Carrizo citrange)和埃及酸橙(Cleopatra mandarin)——对不同非生物胁迫组合的转录组和蛋白质组图谱,我们揭示了对热胁迫、高辐照度和干旱三重组合的关键反应。卡里佐对这种胁迫组合的特定转录组反应旨在调节RNA代谢途径和翻译过程,这可能使其相对于埃及酸橙具有优势。此外,我们发现内质网应激反应在两种基因型的所有单个和组合胁迫条件下都是常见的,并确定了特定组热休克蛋白(HSP)的积累,如小分子HSP和HSP70,以及未折叠蛋白反应的调节因子BiP2和PDIL2-2,它们可能是柑橘对三重胁迫组合耐受性的相关因素。综上所述,我们的研究结果为柑橘植物对多重胁迫组合的适应过程提供了新的见解,这对于提高作物对不断变化的气候条件的耐受性至关重要。