Suppr超能文献

基于多模态数据分析的胃肠癌肿瘤异质性。

Tumor Heterogeneity in Gastrointestinal Cancer Based on Multimodal Data Analysis.

机构信息

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology, Guangzhou 510641, China.

出版信息

Genes (Basel). 2024 Sep 13;15(9):1207. doi: 10.3390/genes15091207.

Abstract

BACKGROUND

Gastrointestinal cancer cells display both morphology and physiology diversity, thus posing a significant challenge for precise representation by a single data model. We conducted an in-depth study of gastrointestinal cancer heterogeneity by integrating and analyzing data from multiple modalities.

METHODS

We used a modified Canny algorithm to identify edges from tumor images, capturing intricate nonlinear interactions between pixels. These edge features were then combined with differentially expressed mRNA, miRNA, and immune cell data. Before data integration, we used the K-medoids algorithm to pre-cluster individual data types. The results of pre-clustering were used to construct the kernel matrix. Finally, we applied spectral clustering to the fusion matrix to identify different tumor subtypes. Furthermore, we identified hub genes linked to these subtypes and their biological roles through the application of Weighted Gene Co-expression Network Analysis (WGCNA) and Gene Ontology (GO) enrichment analysis.

RESULTS

Our investigation categorized patients into three distinct tumor subtypes and pinpointed hub genes associated with each. Genes , , and were identified as having a differential impact on the metastatic and invasive capabilities of cancer cells.

CONCLUSION

By harnessing multimodal features, our study enhances the understanding of gastrointestinal tumor heterogeneity and identifies biomarkers for personalized medicine and targeted treatments.

摘要

背景

胃肠道癌细胞表现出形态和生理多样性,因此单一数据模型难以准确地描述它们。我们通过整合和分析多种模态的数据,深入研究了胃肠道癌症的异质性。

方法

我们使用改进的 Canny 算法从肿瘤图像中识别边缘,捕捉像素之间复杂的非线性相互作用。然后将这些边缘特征与差异表达的 mRNA、miRNA 和免疫细胞数据相结合。在进行数据整合之前,我们使用 K-medoids 算法对单个数据类型进行预聚类。预聚类的结果用于构建核矩阵。最后,我们应用谱聚类对融合矩阵进行分析,以识别不同的肿瘤亚型。此外,我们通过加权基因共表达网络分析(WGCNA)和基因本体论(GO)富集分析,确定与这些亚型相关的枢纽基因及其生物学功能。

结果

我们的研究将患者分为三种不同的肿瘤亚型,并确定了与每种亚型相关的枢纽基因。基因 、 和 被确定为对癌细胞的转移和侵袭能力有差异影响。

结论

通过利用多模态特征,我们的研究增强了对胃肠道肿瘤异质性的理解,并确定了用于个性化医学和靶向治疗的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b6/11430818/98ffb0155179/genes-15-01207-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验