Suppr超能文献

胃肠道恶性肿瘤的多组学视角:一项系统综述。

Multi-omics perspectives for gastrointestinal malignancy: A systematic review.

作者信息

Koo Thai-Hau, Lee Yi-Lin, Leong Xue-Bin, Hayati Firdaus, Zakaria Mohd Hazeman, Zakaria Andee Dzulkarnaen

机构信息

Department of Internal Medicine, University Sains Malaysia Specialist Hospital, Kubang Kerian 16150, Kelantan, Malaysia.

School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia.

出版信息

World J Gastrointest Surg. 2025 Jul 27;17(7):107110. doi: 10.4240/wjgs.v17.i7.107110.

Abstract

BACKGROUND

Gastrointestinal (GI) malignancies, including gastric and colorectal cancers, remain one of the primary contributors to cancer-related illness and death globally. Despite the availability of conventional diagnostic tools, early detection and personalized treatment remain significant clinical challenges. Integrated multi-omics methods encompassing genomic, transcriptomic, proteomic, metabolomic, and microbiome profiles have emerged as powerful tools for advancing precision oncology, improving diagnostic accuracy, and informing therapeutic strategies.

AIM

To investigate the application of multi-omics approaches in the early detection, risk stratification, treatment optimization, and biomarker discovery of GI malignancies.

METHODS

The systematic review process was conducted in accordance with the PRISMA 2020 guidelines. Five databases, PubMed, ScienceDirect, Scopus, ProQuest, and Web of Science, were searched for studies published in English from 2015 onwards. Eligible studies involved human subjects and focused on multi-omics integration in GI cancers, including biomarker identification, tumor microenvironment analysis, tumor heterogeneity, organoid modeling, and artificial intelligence (AI)-driven analytics. Data extraction included study characteristics, omics modalities, clinical applications, and evaluation of study quality conducted with the Cochrane risk of bias 2.0 instrument.

RESULTS

A total of 17196 initially identified articles, 20 met the inclusion criteria. The findings highlight the superiority of multi-omics platforms over traditional biomarkers (, carcinoembryonic antigen and carbohydrate antigen 19-9 in detecting early stage GI cancers. Key applications include the identification of circulating tumor DNA, extracellular vesicles, lipidomic and proteomic signatures, and the adoption of AI algorithms to enhance diagnostic precision. Multi-omics analysis has also revealed the mechanisms of immune modulation, tumor microenvironment regulation, metastatic behavior, and drug resistance. Organoid models and microbiota profiling have contributed to personalized therapeutic strategies and immunotherapy optimization.

CONCLUSION

Multi-omics approaches offer significant advancements in the early diagnosis, prognostic evaluation, and personalized treatment of GI malignancies. Their integration with AI analytics, organoid biobanking, and microbiota modulation provides a pathway for precision oncology research.

摘要

背景

胃肠道(GI)恶性肿瘤,包括胃癌和结直肠癌,仍然是全球癌症相关疾病和死亡的主要原因之一。尽管有传统的诊断工具,但早期检测和个性化治疗仍然是重大的临床挑战。整合基因组、转录组、蛋白质组、代谢组和微生物组图谱的多组学方法已成为推进精准肿瘤学、提高诊断准确性和指导治疗策略的强大工具。

目的

探讨多组学方法在胃肠道恶性肿瘤的早期检测、风险分层、治疗优化和生物标志物发现中的应用。

方法

系统评价过程按照PRISMA 2020指南进行。检索了五个数据库,即PubMed、ScienceDirect、Scopus、ProQuest和Web of Science,以查找2015年起发表的英文研究。符合条件的研究涉及人类受试者,并专注于胃肠道癌症的多组学整合,包括生物标志物鉴定、肿瘤微环境分析、肿瘤异质性、类器官建模和人工智能(AI)驱动的分析。数据提取包括研究特征、组学模式、临床应用,以及使用Cochrane偏倚风险2.0工具对研究质量的评估。

结果

最初识别出17196篇文章,20篇符合纳入标准。研究结果突出了多组学平台在检测早期胃肠道癌症方面优于传统生物标志物(如癌胚抗原和糖类抗原19-9)。关键应用包括循环肿瘤DNA、细胞外囊泡、脂质组和蛋白质组特征的鉴定,以及采用AI算法提高诊断精度。多组学分析还揭示了免疫调节、肿瘤微环境调节、转移行为和耐药性的机制。类器官模型和微生物群分析有助于个性化治疗策略和免疫治疗优化。

结论

多组学方法在胃肠道恶性肿瘤的早期诊断、预后评估和个性化治疗方面取得了重大进展。它们与AI分析、类器官生物样本库和微生物群调节的整合为精准肿瘤学研究提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7f9/12305287/40d1f9200365/wjgs-17-7-107110-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验