School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
Int J Mol Sci. 2024 Sep 12;25(18):9844. doi: 10.3390/ijms25189844.
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
苦味肽是蛋白质在酸性、碱性或酶条件下水解产生的小分子肽。这些肽可以增强食物的风味,并提供各种健康益处,具有降血压、降血糖、抗氧化、抗菌和免疫调节特性。它们在功能性食品的开发和疾病的预防与治疗方面具有巨大的潜力。本文介绍了苦味肽的多种来源,并讨论了苦味产生的机制及其在味觉系统中的生理功能。此外,还强调了生物信息学在苦味肽研究中的应用,包括苦味肽数据库的建立和完善、定量构效关系(QSAR)模型在苦味阈值预测中的应用,以及基于机器学习和深度学习算法构建苦味肽分类预测模型的最新进展,用于苦味肽的鉴定。未来的研究方向包括增强数据库、多样化模型以及应用生成模型,以推进苦味肽研究向深化和发现更多实际应用的方向发展。