Suppr超能文献

抗耐药病原体的抗菌肽和蛋白质。

Antimicrobial peptides and proteins against drug-resistant pathogens.

作者信息

Wang Yeji, Song Minghui, Chang Wenqiang

机构信息

Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.

出版信息

Cell Surf. 2024 Nov 27;12:100135. doi: 10.1016/j.tcsw.2024.100135. eCollection 2024 Dec.

Abstract

The rise of drug-resistant pathogens, driven by the misuse and overuse of antibiotics, has created a formidable challenge for global public health. Antimicrobial peptides and proteins have garnered considerable attention as promising candidates for novel antimicrobial agents. These bioactive molecules, whether derived from natural sources, designed synthetically, or predicted using artificial intelligence, can induce lethal effects on pathogens by targeting key microbial structures or functional components, such as cell membranes, cell walls, biofilms, and intracellular components. Additionally, they may enhance overall immune defenses by modulating innate or adaptive immune responses in the host. Of course, development of antimicrobial peptides and proteins also face some limitations, including high toxicity, lack of selectivity, insufficient stability, and potential immunogenicity. Despite these challenges, they remain a valuable resource in the fight against drug-resistant pathogens. Future research should focus on overcoming these limitations to fully realize the therapeutic potential of antimicrobial peptides in the infection control.

摘要

抗生素的滥用和过度使用导致耐药病原体的出现,这给全球公共卫生带来了巨大挑战。抗菌肽和蛋白质作为新型抗菌剂的有前途的候选者,已引起了相当大的关注。这些生物活性分子,无论是源自天然来源、人工合成设计还是使用人工智能预测的,都可以通过靶向关键的微生物结构或功能成分(如细胞膜、细胞壁、生物膜和细胞内成分)对病原体产生致死作用。此外,它们还可以通过调节宿主的固有免疫或适应性免疫反应来增强整体免疫防御。当然,抗菌肽和蛋白质的开发也面临一些限制,包括高毒性、缺乏选择性、稳定性不足和潜在的免疫原性。尽管存在这些挑战,但它们仍然是对抗耐药病原体的宝贵资源。未来的研究应专注于克服这些限制,以充分实现抗菌肽在感染控制中的治疗潜力。

相似文献

1
Antimicrobial peptides and proteins against drug-resistant pathogens.
Cell Surf. 2024 Nov 27;12:100135. doi: 10.1016/j.tcsw.2024.100135. eCollection 2024 Dec.
2
Antimicrobial peptide DiPGLa-H exhibits the most outstanding anti-infective activity among the PGLa variants based on a systematic comparison.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0206224. doi: 10.1128/aem.02062-24. Epub 2025 Feb 5.
3
Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections.
Adv Colloid Interface Sci. 2024 Nov;333:103282. doi: 10.1016/j.cis.2024.103282. Epub 2024 Sep 6.
4
Unlocking the Potential of Antimicrobial Peptides: Cutting-Edge Advances and Therapeutic Potential in Combating Bacterial Keratitis.
Bioconjug Chem. 2025 Mar 19;36(3):311-331. doi: 10.1021/acs.bioconjchem.4c00594. Epub 2025 Feb 19.
7
Evaluation of Antimicrobial Peptides from the Black Soldier Fly () against a Selection of Human Pathogens.
Microbiol Spectr. 2022 Feb 23;10(1):e0166421. doi: 10.1128/spectrum.01664-21. Epub 2022 Jan 5.
9
Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria.
Yale J Biol Med. 2022 Dec 22;95(4):445-463. eCollection 2022 Dec.
10
Antimicrobial peptides: Opportunities and challenges in overcoming resistance.
Microbiol Res. 2024 Sep;286:127822. doi: 10.1016/j.micres.2024.127822. Epub 2024 Jun 26.

引用本文的文献

2
Strategic targeting of AckA in Mycobacterium tuberculosis using peptide inhibitors.
Arch Microbiol. 2025 Aug 22;207(10):235. doi: 10.1007/s00203-025-04439-4.
4
Polysaccharide-Based Nanocarriers for Natural Antimicrobials: A Review.
Polymers (Basel). 2025 Jun 24;17(13):1750. doi: 10.3390/polym17131750.
6
Snake Venom Compounds: A New Frontier in the Battle Against Antibiotic-Resistant Infections.
Toxins (Basel). 2025 May 1;17(5):221. doi: 10.3390/toxins17050221.
7
Does Extreme Wettability Matter: The Effect of Copper Wettability on Infection Spread through Hospital Surfaces.
ACS Omega. 2025 May 5;10(18):19129-19138. doi: 10.1021/acsomega.5c01931. eCollection 2025 May 13.

本文引用的文献

1
Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review.
Int J Mol Sci. 2024 Sep 12;25(18):9844. doi: 10.3390/ijms25189844.
2
Environmental microbiome, human fungal pathogens, and antimicrobial resistance.
Trends Microbiol. 2025 Jan;33(1):112-129. doi: 10.1016/j.tim.2024.08.003. Epub 2024 Sep 19.
3
Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections.
Adv Colloid Interface Sci. 2024 Nov;333:103282. doi: 10.1016/j.cis.2024.103282. Epub 2024 Sep 6.
5
Mining human microbiomes reveals an untapped source of peptide antibiotics.
Cell. 2024 Sep 19;187(19):5453-5467.e15. doi: 10.1016/j.cell.2024.07.027. Epub 2024 Aug 19.
6
Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity.
Nat Biomed Eng. 2024 Jul;8(7):842-853. doi: 10.1038/s41551-024-01243-1. Epub 2024 Jul 31.
7
Deep-learning-enabled antibiotic discovery through molecular de-extinction.
Nat Biomed Eng. 2024 Jul;8(7):854-871. doi: 10.1038/s41551-024-01201-x. Epub 2024 Jun 11.
8
Discovery of antimicrobial peptides in the global microbiome with machine learning.
Cell. 2024 Jul 11;187(14):3761-3778.e16. doi: 10.1016/j.cell.2024.05.013. Epub 2024 Jun 5.
9
Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded.
Int J Mol Sci. 2024 Apr 29;25(9):4870. doi: 10.3390/ijms25094870.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验