Human Molecular Genetics Group-Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain.
Urology Service, Bellvitge University Hospital-ICS (Institut Català de la Salut), 08908 Hospitalet de Llobregat, Barcelona, Spain.
Int J Mol Sci. 2024 Sep 20;25(18):10122. doi: 10.3390/ijms251810122.
PSA screening has led to an over-diagnosis of prostate cancer (PCa) and unnecessary biopsies of benign conditions due to its low cancer specificity. Consequently, more accurate, preferentially non-invasive, tests are needed. We aim to evaluate the potential of semen sEV (small extracellular vesicles) tsRNAs (tRNA-derived small RNAs) as PCa indicators. Initially, following a literature review in the OncotRF database and high-throughput small RNA-sequencing studies in PCa tissue together with the sncRNA profile in semen sEVs, we selected four candidate 5'tRF tsRNAs for validation as PCa biomarkers. RT-qPCR analysis in semen sEVs from men with moderately elevated serum PSA levels successfully shows that the differential expression of the four tRFs between PCa and healthy control groups can be detected in a non-invasive manner. The combined model incorporating PSA and specific tRFs (5'-tRNA-Glu-TTC-9-1_L30 and 5'-tRNA-Val-CAC-3-1_L30) achieved high predictive accuracy in identifying samples with a Gleason score ≥ 7 and staging disease beyond IIA, supporting that the 5'tRF fingerprint in semen sEV can improve the PSA predictive value to discriminate between malignant and indolent prostate conditions. The in silico study allowed us to map target genes for the four 5'tRFs possibly involved in PCa. Our findings highlight the synergistic use of multiple biomarkers as an efficient approach to improve PCa screening and prognosis.
PSA 筛查导致前列腺癌(PCa)的过度诊断和良性疾病的不必要活检,因为其癌症特异性低。因此,需要更准确的、优先非侵入性的测试。我们旨在评估精液 sEV(小细胞外囊泡)tsRNAs(tRNA 衍生的小 RNA)作为 PCa 指标的潜力。最初,在 OncotRF 数据库中进行文献回顾,并对 PCa 组织中的高通量小 RNA-seq 研究以及精液 sEV 中的 sncRNA 图谱进行研究后,我们选择了四个候选的 5'tRF tsRNAs 进行验证作为 PCa 生物标志物。在血清 PSA 水平中度升高的男性的精液 sEV 中进行 RT-qPCR 分析,成功地表明,在非侵入性方式下可以检测到 PCa 组和健康对照组之间四个 tRF 的差异表达。结合 PSA 和特定 tRFs(5'-tRNA-Glu-TTC-9-1_L30 和 5'-tRNA-Val-CAC-3-1_L30)的组合模型在识别 Gleason 评分≥7 和分期疾病超出 IIA 的样本方面具有较高的预测准确性,支持精液 sEV 中的 5'tRF 指纹可以提高 PSA 的预测值,以区分恶性和惰性前列腺疾病。计算机模拟研究使我们能够对可能参与 PCa 的四个 5'tRF 的靶基因进行映射。我们的研究结果强调了多种生物标志物的协同使用是改善 PCa 筛查和预后的有效方法。