Menjívar Pablo José, Solis Pino Andrés Felipe, Mejía Manzano Julio Eduardo, Ramos Cabrera Efrén Venancio
Facultad de Ingeniería, Corporación Universitaria Comfacauca-Unicomfacauca, Cl. 4 N. 8-30, Popayán 190001, Cauca, Colombia.
Escuela de Ciencias Básicas, Tecnología e Ingeniería-ECBTI, Universidad Nacional Abierta y a Distancia-UNAD, Calle 5 # 46N-67, Popayán 190001, Cauca, Colombia.
Microorganisms. 2025 Apr 9;13(4):860. doi: 10.3390/microorganisms13040860.
Phosphorus is an important macronutrient for plant development, but its bioavailability in soil is often limited. Phosphate-solubilizing microorganisms play a vital role in phosphorus biogeochemistry, offering a sustainable alternative to chemical fertilizers, which pose environmental risks. Manual measurements for quantifying phosphate solubilization capacity are laborious, subjective, and time-consuming, so there is a need to develop more efficient and objective approaches. This study aimed to develop and validate a machine vision system called IGLOO to automate and optimize the determination of relative phosphate solubilization efficiency in phosphate-solubilizing bacteria. IGLOO was developed using YOLOv8 in conjunction with creating and labeling a dataset of images of bacterial colonies grown in vitro with the bacterial strains Enterobacter R11 and FCRK4. The model was trained with a different number of epochs. IGLOO's performance was evaluated by comparing its segmentation accuracy with accepted metrics in the domain and by contrasting its solubilization efficiency estimates with experts' manual measurements. The model achieved greater than 90% accuracy for colony and halo detection, with a relative error of less than 6% compared to manual measurements, demonstrating its reliability by minimizing observer variability. Finally, IGLOO represents a significant advance in the quantitative evaluation of phosphate solubilization of microorganisms because it reduces analysis time and provides objective and reproducible results for agricultural studies.
磷是植物生长发育所需的重要大量营养素,但其在土壤中的生物有效性往往有限。解磷微生物在磷的生物地球化学过程中起着至关重要的作用,为存在环境风险的化学肥料提供了一种可持续的替代方案。手动测量磷溶解能力既费力、主观又耗时,因此需要开发更高效、客观的方法。本研究旨在开发并验证一种名为IGLOO的机器视觉系统,以实现解磷细菌相对磷溶解效率测定的自动化和优化。IGLOO是使用YOLOv8开发的,同时创建并标记了体外培养的肠杆菌R11和FCRK4菌株细菌菌落图像的数据集。该模型使用不同的轮次进行训练。通过将IGLOO的分割精度与该领域公认的指标进行比较,并将其溶解效率估计值与专家的手动测量结果进行对比,来评估IGLOO的性能。该模型在菌落和晕圈检测方面的准确率超过90%,与手动测量相比相对误差小于6%,通过最大限度地减少观察者差异证明了其可靠性。最后,IGLOO代表了微生物磷溶解定量评估方面的一项重大进展,因为它减少了分析时间,并为农业研究提供了客观且可重复的结果。