Suppr超能文献

基于周期性极化薄膜铌酸锂的适配宽度波导中的高效二次谐波产生

Efficient Second-Harmonic Generation in Adapted-Width Waveguides Based on Periodically Poled Thin-Film Lithium Niobate.

作者信息

He Junjie, Liu Lian, Lin Mianjie, Chen Houhong, Ma Fei

机构信息

School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Micromachines (Basel). 2024 Sep 12;15(9):1145. doi: 10.3390/mi15091145.

Abstract

Frequency conversion process based on periodically poled thin-film lithium niobate (PPTFLN) has been widely recognized as an important component for quantum information and photonic signal processing. Benefiting from the tight confinement of optical modes, the normalized conversion efficiency (NCE) of nanophotonic waveguides is improved by orders of magnitude compared to their bulk counterparts. However, the power conversion efficiency of these devices is limited by inherent nanoscale inhomogeneity of thin-film lithium niobate (TFLN), leading to undesirable phase errors. In this paper, we theoretically present a novel approach to solve this problem. Based on dispersion engineering, we aim at adjusting the waveguide structure, making local waveguide width adjustment at positions of different thicknesses, thus eliminating the phase errors. The adapted waveguide width design is applied for etched and loaded waveguides based on PPTFLN, achieving the ultrahigh power conversion efficiency of second harmonic generation (SHG) up to 2.1 × 10%W and 6936%W, respectively, which surpasses the power conversion efficiency of other related works. Our approach just needs standard periodic poling with a single period, significantly reducing the complexity of electrode fabrication and the difficulty of poling, and allows for the placing of multiple waveguides, without individual poling designs for each waveguide. With the advantages of simplicity, high production, and meeting current micro-nano fabrication technology, our work may open a new way for achieving highly efficient second-order nonlinear optical processes based on PPTFLN.

摘要

基于周期性极化薄膜铌酸锂(PPTFLN)的频率转换过程已被广泛认为是量子信息和光子信号处理的重要组成部分。受益于光学模式的紧密限制,与块状波导相比,纳米光子波导的归一化转换效率(NCE)提高了几个数量级。然而,这些器件的功率转换效率受到薄膜铌酸锂(TFLN)固有的纳米级不均匀性的限制,导致出现不理想的相位误差。在本文中,我们从理论上提出了一种解决该问题的新方法。基于色散工程,我们旨在调整波导结构,在不同厚度的位置进行局部波导宽度调整,从而消除相位误差。这种适配的波导宽度设计应用于基于PPTFLN的蚀刻波导和加载波导,分别实现了高达2.1×10%W和6936%W的二次谐波产生(SHG)超高功率转换效率,超过了其他相关工作的功率转换效率。我们的方法仅需单周期的标准周期性极化,显著降低了电极制造的复杂性和极化难度,并且允许放置多个波导,无需为每个波导进行单独的极化设计。凭借简单、高产以及符合当前微纳制造技术的优势,我们的工作可能为基于PPTFLN实现高效二阶非线性光学过程开辟一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c91b/11434068/571f40c69e7d/micromachines-15-01145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验