Shi Xiaodong, Mohanraj Sakthi Sanjeev, Dhyani Veerendra, Baiju Angela Anna, Wang Sihao, Sun Jiapeng, Zhou Lin, Paterova Anna, Leong Victor, Zhu Di
A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore.
Department of Physics, National University of Singapore, Singapore, 117542, Singapore.
Light Sci Appl. 2024 Oct 3;13(1):282. doi: 10.1038/s41377-024-01645-5.
Integrated photon-pair sources are crucial for scalable photonic quantum systems. Thin-film lithium niobate is a promising platform for on-chip photon-pair generation through spontaneous parametric down-conversion (SPDC). However, the device implementation faces practical challenges. Periodically poled lithium niobate (PPLN), despite enabling flexible quasi-phase matching, suffers from poor fabrication reliability and device repeatability, while conventional modal phase matching (MPM) methods yield limited efficiencies due to inadequate mode overlaps. Here, we introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation. It leverages layer-wise polarity inversion through electrical poling to break spatial symmetry and significantly enhance nonlinear interactions for MPM, achieving a notable normalized second-harmonic generation (SHG) conversion efficiency of 4615% Wcm. Through a cascaded SHG and SPDC process, we demonstrate photon-pair generation with a normalized brightness of 3.1 × 10 Hz nm mW in a 3.3 mm long LPLN waveguide, surpassing existing on-chip sources under similar operating configurations. Crucially, our LPLN waveguides offer enhanced fabrication reliability and reduced sensitivity to geometric variations and temperature fluctuations compared to PPLN devices. We expect LPLN to become a promising solution for on-chip nonlinear wavelength conversion and non-classical light generation, with immediate applications in quantum communication, networking, and on-chip photonic quantum information processing.
集成光子对源对于可扩展的光子量子系统至关重要。薄膜铌酸锂是通过自发参量下转换(SPDC)在片上生成光子对的一个有前景的平台。然而,器件的实现面临实际挑战。周期性极化铌酸锂(PPLN)尽管能够实现灵活的准相位匹配,但存在制备可靠性差和器件重复性低的问题,而传统的模式相位匹配(MPM)方法由于模式重叠不足导致效率有限。在此,我们引入一种用于高效生成光子对的层极化铌酸锂(LPLN)纳米光子波导。它通过电场极化利用逐层极性反转来打破空间对称性,并显著增强MPM的非线性相互作用,实现了4615% W/cm的显著归一化二次谐波产生(SHG)转换效率。通过级联SHG和SPDC过程,我们在3.3毫米长的LPLN波导中展示了归一化亮度为3.1×10 Hz/nm/mW的光子对产生,超过了类似工作配置下的现有片上光源。至关重要的是,与PPLN器件相比,我们的LPLN波导具有更高的制备可靠性,并且对几何变化和温度波动的敏感性更低。我们预计LPLN将成为片上非线性波长转换和非经典光产生的一个有前景的解决方案,在量子通信、网络和片上光子量子信息处理中具有直接应用。