Brata Vlad Dumitru, Incze Victor, Ismaiel Abdulrahman, Turtoi Daria Claudia, Grad Simona, Popovici Raluca, Duse Traian Adrian, Surdea-Blaga Teodora, Padureanu Alexandru Marius, David Liliana, Dita Miruna Oana, Baldea Corina Alexandrina, Popa Stefan Lucian
Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania.
2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania.
J Pers Med. 2024 Sep 23;14(9):1012. doi: 10.3390/jpm14091012.
Esophageal varices, dilated submucosal veins in the lower esophagus, are commonly associated with portal hypertension, particularly due to liver cirrhosis. The high morbidity and mortality linked to variceal hemorrhage underscore the need for accurate diagnosis and effective management. The traditional method of assessing esophageal varices is esophagogastroduodenoscopy (EGD), which, despite its diagnostic and therapeutic capabilities, presents limitations such as interobserver variability and invasiveness. This review aims to explore the role of artificial intelligence (AI) in enhancing the management of esophageal varices, focusing on its applications in diagnosis, risk stratification, and treatment optimization.
This systematic review focuses on the capabilities of AI algorithms to analyze clinical scores, laboratory data, endoscopic images, and imaging modalities like CT scans.
AI-based systems, particularly machine learning (ML) and deep learning (DL) algorithms, have demonstrated the ability to improve risk stratification and diagnosis of esophageal varices, analyzing vast amounts of data, identifying patterns, and providing individualized recommendations. However, despite these advancements, clinical scores based on laboratory data still show low specificity for esophageal varices, often requiring confirmatory endoscopic or imaging studies.
AI integration in managing esophageal varices offers significant potential for advancing diagnosis, risk assessment, and treatment strategies. While promising, AI systems should complement rather than replace traditional methods, ensuring comprehensive patient evaluation. Further research is needed to refine these technologies and validate their efficacy in clinical practice.
食管静脉曲张是指食管下段黏膜下静脉扩张,通常与门静脉高压有关,尤其是由肝硬化引起的。与静脉曲张出血相关的高发病率和死亡率凸显了准确诊断和有效管理的必要性。评估食管静脉曲张的传统方法是食管胃十二指肠镜检查(EGD),尽管它具有诊断和治疗能力,但存在诸如观察者间差异和侵入性等局限性。本综述旨在探讨人工智能(AI)在加强食管静脉曲张管理中的作用,重点关注其在诊断、风险分层和治疗优化方面的应用。
本系统综述聚焦于人工智能算法分析临床评分、实验室数据、内镜图像以及CT扫描等成像方式的能力。
基于人工智能的系统,特别是机器学习(ML)和深度学习(DL)算法,已证明有能力改善食管静脉曲张的风险分层和诊断,能够分析大量数据、识别模式并提供个性化建议。然而,尽管有这些进展,基于实验室数据的临床评分对食管静脉曲张的特异性仍然较低,通常需要进行内镜或影像学检查来确诊。
人工智能在食管静脉曲张管理中的整合为推进诊断、风险评估和治疗策略提供了巨大潜力。虽然前景广阔,但人工智能系统应补充而非取代传统方法,以确保对患者进行全面评估。需要进一步研究来完善这些技术并验证其在临床实践中的疗效。