Tani J
Sony Comput. Sci. Lab. Inc., Tokyo.
IEEE Trans Syst Man Cybern B Cybern. 1996;26(3):421-36. doi: 10.1109/3477.499793.
This paper discusses how a behavior-based robot can construct a "symbolic process" that accounts for its deliberative thinking processes using models of the environment. The paper focuses on two essential problems; one is the symbol grounding problem and the other is how the internal symbolic processes can be situated with respect to the behavioral contexts. We investigate these problems by applying a dynamical system's approach to the robot navigation learning problem. Our formulation, based on a forward modeling scheme using recurrent neural learning, shows that the robot is capable of learning grammatical structure hidden in the geometry of the workspace from the local sensory inputs through its navigational experiences. Furthermore, the robot is capable of generating diverse action plans to reach an arbitrary goal using the acquired forward model which incorporates chaotic dynamics. The essential claim is that the internal symbolic process, being embedded in the attractor, is grounded since it is self-organized solely through interaction with the physical world. It is also shown that structural stability arises in the interaction between the neural dynamics and the environmental dynamics, which accounts for the situatedness of the internal symbolic process, The experimental results using a mobile robot, equipped with a local sensor consisting of a laser range finder, verify our claims.
本文讨论了基于行为的机器人如何使用环境模型构建一个“符号过程”,以解释其深思熟虑的思维过程。本文关注两个基本问题:一个是符号基础问题,另一个是内部符号过程如何相对于行为上下文进行定位。我们通过将动态系统方法应用于机器人导航学习问题来研究这些问题。我们基于使用递归神经学习的前向建模方案的公式表明,机器人能够通过其导航经验从局部感官输入中学习隐藏在工作空间几何结构中的语法结构。此外,机器人能够使用包含混沌动力学的习得前向模型生成各种行动计划以达到任意目标。其核心主张是,嵌入在吸引子中的内部符号过程是有基础的,因为它仅通过与物理世界的相互作用而自组织形成。研究还表明,神经动力学与环境动力学之间的相互作用中出现了结构稳定性,这解释了内部符号过程的情境性。使用配备由激光测距仪组成的局部传感器的移动机器人进行的实验结果验证了我们的主张。