Suppr超能文献

基于改进斑马优化算法和LightGBM的安卓恶意软件新型多分类动态检测模型

Novel Multi-Classification Dynamic Detection Model for Android Malware Based on Improved Zebra Optimization Algorithm and LightGBM.

作者信息

Zhou Shuncheng, Li Honghui, Fu Xueliang, Han Daoqi, He Xin

机构信息

College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

出版信息

Sensors (Basel). 2024 Sep 14;24(18):5975. doi: 10.3390/s24185975.

Abstract

With the increasing popularity of Android smartphones, malware targeting the Android platform is showing explosive growth. Currently, mainstream detection methods use static analysis methods to extract features of the software and apply machine learning algorithms for detection. However, static analysis methods can be less effective when faced with Android malware that employs sophisticated obfuscation techniques such as altering code structure. In order to effectively detect Android malware and improve the detection accuracy, this paper proposes a dynamic detection model for Android malware based on the combination of an Improved Zebra Optimization Algorithm (IZOA) and Light Gradient Boosting Machine (LightGBM) model, called IZOA-LightGBM. By introducing elite opposition-based learning and firefly perturbation strategies, IZOA enhances the convergence speed and search capability of the traditional zebra optimization algorithm. Then, the IZOA is employed to optimize the LightGBM model hyperparameters for the dynamic detection of Android malware multi-classification. The results from experiments indicate that the overall accuracy of the proposed IZOA-LightGBM model on the CICMalDroid-2020, CCCS-CIC-AndMal-2020, and CIC-AAGM-2017 datasets is 99.75%, 98.86%, and 97.95%, respectively, which are higher than the other comparative models.

摘要

随着安卓智能手机的日益普及,针对安卓平台的恶意软件呈爆发式增长。目前,主流检测方法采用静态分析方法提取软件特征,并应用机器学习算法进行检测。然而,当面对采用复杂混淆技术(如改变代码结构)的安卓恶意软件时,静态分析方法可能效果不佳。为了有效检测安卓恶意软件并提高检测准确率,本文提出了一种基于改进斑马优化算法(IZOA)和轻量级梯度提升机(LightGBM)模型相结合的安卓恶意软件动态检测模型,称为IZOA-LightGBM。通过引入基于精英对抗的学习和萤火虫扰动策略,IZOA提高了传统斑马优化算法的收敛速度和搜索能力。然后,利用IZOA对LightGBM模型的超参数进行优化,用于安卓恶意软件多分类的动态检测。实验结果表明,所提出的IZOA-LightGBM模型在CICMalDroid-2020、CCCS-CIC-AndMal-2020和CIC-AAGM-2017数据集上的总体准确率分别为99.75%、98.86%和97.95%,均高于其他对比模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验