Suppr超能文献

基于双延迟深度确定性策略梯度算法的下肢外骨骼康复机器人运动控制策略研究。

Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm.

机构信息

School of Mechanical Engineering, Chengdu University, Chengdu 610106, China.

School of Artificial Intelligence, Hezhou University, Hezhou 542899, China.

出版信息

Sensors (Basel). 2024 Sep 17;24(18):6014. doi: 10.3390/s24186014.

Abstract

The motion control system of a lower-limb exoskeleton rehabilitation robot (LLERR) is designed to assist patients in lower-limb rehabilitation exercises. This research designed a motion controller for an LLERR-based on the Twin Delayed Deep Deterministic policy gradient (TD3) algorithm to control the lower-limb exoskeleton for gait training in a staircase environment. Commencing with the establishment of a mathematical model of the LLERR, the dynamics during its movement are systematically described. The TD3 algorithm is employed to plan the motion trajectory of the LLERR's right-foot sole, and the target motion curve of the hip (knee) joint is deduced inversely to ensure adherence to human physiological principles during motion execution. The control strategy of the TD3 algorithm ensures that the movement of each joint of the LLERR is consistent with the target motion trajectory. The experimental results indicate that the trajectory tracking errors of the hip (knee) joints are all within 5°, confirming that the LLERR successfully assists patient in completing lower-limb rehabilitation training in a staircase environment. The primary contribution of this study is to propose a non-linear control strategy tailored for the staircase environment, enabling the planning and control of the lower-limb joint motions facilitated by the LLERR.

摘要

下肢外骨骼康复机器人(LLERR)的运动控制系统旨在辅助患者进行下肢康复运动。本研究基于双延迟深度确定性策略梯度(TD3)算法为基于 LLERR 的运动控制器进行设计,用于控制下肢外骨骼在楼梯环境中进行步态训练。本研究从建立 LLERR 的数学模型开始,系统地描述了其运动过程中的动力学。TD3 算法用于规划 LLERR 右脚底部的运动轨迹,并反推推导得出髋关节(膝关节)的目标运动曲线,以确保运动执行过程中符合人体生理原理。TD3 算法的控制策略确保了 LLERR 每个关节的运动与目标运动轨迹一致。实验结果表明,髋关节(膝关节)的轨迹跟踪误差均在 5°以内,证实了 LLERR 成功帮助患者在楼梯环境中完成下肢康复训练。本研究的主要贡献在于提出了一种适用于楼梯环境的非线性控制策略,能够规划和控制由 LLERR 辅助的下肢关节运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cede/11435493/2b8b7e3596d7/sensors-24-06014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验