IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8693-8706. doi: 10.1109/TNNLS.2022.3152255. Epub 2023 Oct 27.
The measurement delay of the feedback control system is a universal problem in industrial engineering, which will degrade output performance, especially causing undesirable chatter responses. In this study, a deep-Gaussian-process (DGP)-based method for operator's gait prediction is proposed to estimate the real-time motion intention and to compensate for the measurement delay of the inertial measurement unit (IMU). On the basis of these gait prediction uncertainties quantified by the DGP method, a variable admittance controller is designed to reduce real-time human-exoskeleton interaction torque. The reference trajectory is generated by the admittance controller, which is smoothed by the two-order Bessel interpolation. Meanwhile, the admittance parameters are self-regulated based on the defined uncertainty index of gait prediction. The extend-state observer (ESO) with backstepping iteration is adopted to compensate unmeasured system state, model uncertainties, and unmodeled dynamics of lower limb exoskeleton. The effectiveness of the proposed gait prediction and control scheme is verified by both the comparative simulations and experimental results of the human-exoskeleton cooperative motion.
反馈控制系统的测量延迟是工业工程中的一个普遍问题,它会降低输出性能,特别是导致不良的颤振响应。在本研究中,提出了一种基于深度高斯过程(DGP)的操作员步态预测方法,用于估计实时运动意图并补偿惯性测量单元(IMU)的测量延迟。基于 DGP 方法量化的这些步态预测不确定性,设计了可变导纳控制器以降低实时人机-外骨骼交互扭矩。参考轨迹由导纳控制器生成,通过二阶贝塞尔插值进行平滑处理。同时,根据步态预测不确定性的定义指标,自适应调节导纳参数。采用带反步迭代的扩张状态观测器(ESO)补偿未测量的系统状态、模型不确定性和下肢外骨骼的未建模动力学。通过人机协作运动的比较仿真和实验结果验证了所提出的步态预测和控制方案的有效性。