Suppr超能文献

一种用于自然水环境中鱼类检测的改进型YOLOv8n

An Improved YOLOv8n Used for Fish Detection in Natural Water Environments.

作者信息

Zhang Zehao, Qu Yi, Wang Tan, Rao Yuan, Jiang Dan, Li Shaowen, Wang Yating

机构信息

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China.

Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei 230036, China.

出版信息

Animals (Basel). 2024 Jul 9;14(14):2022. doi: 10.3390/ani14142022.

Abstract

To improve detection efficiency and reduce cost consumption in fishery surveys, target detection methods based on computer vision have become a new method for fishery resource surveys. However, the specialty and complexity of underwater photography result in low detection accuracy, limiting its use in fishery resource surveys. To solve these problems, this study proposed an accurate method named BSSFISH-YOLOv8 for fish detection in natural underwater environments. First, replacing the original convolutional module with the SPD-Conv module allows the model to lose less fine-grained information. Next, the backbone network is supplemented with a dynamic sparse attention technique, BiFormer, which enhances the model's attention to crucial information in the input features while also optimizing detection efficiency. Finally, adding a 160 × 160 small target detection layer (STDL) improves sensitivity for smaller targets. The model scored 88.3% and 58.3% in the two indicators of mAP@50 and mAP@50:95, respectively, which is 2.0% and 3.3% higher than the YOLOv8n model. The results of this research can be applied to fishery resource surveys, reducing measurement costs, improving detection efficiency, and bringing environmental and economic benefits.

摘要

为提高渔业调查中的检测效率并降低成本消耗,基于计算机视觉的目标检测方法已成为渔业资源调查的一种新方法。然而,水下摄影的特殊性和复杂性导致检测精度较低,限制了其在渔业资源调查中的应用。为解决这些问题,本研究提出了一种名为BSSFISH-YOLOv8的精确方法,用于自然水下环境中的鱼类检测。首先,用SPD-Conv模块替换原始卷积模块,使模型损失更少的细粒度信息。其次,在骨干网络中补充动态稀疏注意力技术BiFormer,增强模型对输入特征中关键信息的注意力,同时优化检测效率。最后,添加一个160×160的小目标检测层(STDL),提高对较小目标的灵敏度。该模型在mAP@50和mAP@50:95这两个指标上的得分分别为88.3%和58.3%,比YOLOv8n模型分别高出2.0%和3.3%。本研究结果可应用于渔业资源调查,降低测量成本,提高检测效率,并带来环境和经济效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe6/11273371/5169b36223d3/animals-14-02022-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验