Suppr超能文献

基于两栖机器人与改进YOLOv8n的轻质污水管道裂缝检测方法

Lightweight Sewer Pipe Crack Detection Method Based on Amphibious Robot and Improved YOLOv8n.

作者信息

Lv Zhenming, Dong Shaojiang, He Jingyao, Hu Bo, Liu Qingyi, Wang Honghang

机构信息

School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China.

Engineering Research Centre of Diagnosis Technology of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China.

出版信息

Sensors (Basel). 2024 Sep 21;24(18):6112. doi: 10.3390/s24186112.

Abstract

Aiming at the problem of difficult crack detection in underground urban sewage pipelines, a lightweight sewage pipeline crack detection method based on sewage pipeline robots and improved YOLOv8n is proposed. The method uses pipeline robots as the equipment carrier to move rapidly and collect high-definition data of apparent diseases in sewage pipelines with both water and sludge media. The lightweight RGCSPELAN module is introduced to reduce the number of parameters while ensuring the detection performance. First, we replaced the lightweight detection head Detect_LADH to reduce the number of parameters and improve the feature extraction of modeled cracks. Finally, we added the LSKA module to the SPPF module to improve the robustness of YOLOv8n. Compared with YOLOv5n, YOLOv6n, YOLOv8n, RT-DETRr18, YOLOv9t, and YOLOv10n, the improved YOLOv8n has a smaller number of parameters of only 1.6 M. The FPS index reaches 261, which is good for real-time detection, and at the same time, the model also has a good detection accuracy. The validation of sewage pipe crack detection through real scenarios proves the feasibility of the proposed method, which has good results in targeting both small and long cracks. It shows potential in improving the safety maintenance, detection efficiency, and cost-effectiveness of urban sewage pipes.

摘要

针对城市地下污水管道裂缝检测困难的问题,提出了一种基于污水管道机器人和改进型YOLOv8n的轻量级污水管道裂缝检测方法。该方法以管道机器人为设备载体,在有水和污泥介质的污水管道中快速移动,采集表观病害的高清数据。引入轻量级RGCSPELAN模块,在保证检测性能的同时减少参数数量。首先,替换轻量级检测头Detect_LADH以减少参数数量并提高对模拟裂缝的特征提取能力。最后,在SPPF模块中添加LSKA模块以提高YOLOv8n的鲁棒性。与YOLOv5n、YOLOv6n、YOLOv8n、RT-DETRr18、YOLOv9t和YOLOv10n相比,改进后的YOLOv8n参数数量更少,仅为1.6M。FPS指标达到261,有利于实时检测,同时该模型也具有良好的检测精度。通过实际场景对污水管道裂缝检测的验证证明了该方法的可行性,在检测小裂缝和长裂缝方面都有良好效果。它在提高城市污水管道的安全维护、检测效率和成本效益方面显示出潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8174/11435957/a5acd3e60571/sensors-24-06112-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验