Suppr超能文献

肌电信号处理中波兰手语特定表达方式的模式识别。

Pattern Recognition in the Processing of Electromyographic Signals for Selected Expressions of Polish Sign Language.

机构信息

Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

Department of Telecommunications and Teleinformatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2024 Oct 18;24(20):6710. doi: 10.3390/s24206710.

Abstract

Gesture recognition has become a significant part of human-machine interaction, particularly when verbal interaction is not feasible. The rapid development of biomedical sensing and machine learning algorithms, including electromyography (EMG) and convolutional neural networks (CNNs), has enabled the interpretation of sign languages, including the Polish Sign Language, based on EMG signals. The objective was to classify the game control gestures and Polish Sign Language gestures recorded specifically for this study using two different data acquisition systems: BIOPAC MP36 and MyoWare 2.0. We compared the classification performance of various machine learning algorithms, with a particular emphasis on CNNs on the dataset of EMG signals representing 24 gestures, recorded using both types of EMG sensors. The results (98.324% versus ≤7.8571% and 95.5307% versus ≤10.2697% of accuracy for CNNs and other classifiers in data recorded with BIOPAC MP36 and MyoWare, respectively) indicate that CNNs demonstrate superior accuracy. These results suggest the feasibility of using lower-cost sensors for effective gesture classification and the viability of integrating affordable EMG-based technologies into broader gesture recognition frameworks, providing a cost-effective solution for real-world applications. The dataset created during the study offers a basis for future studies on EMG-based recognition of Polish Sign Language.

摘要

手势识别已经成为人机交互的重要组成部分,特别是在无法进行口头交互的情况下。生物医学传感和机器学习算法的快速发展,包括肌电图 (EMG) 和卷积神经网络 (CNN),使得基于 EMG 信号的手语,包括波兰手语的解释成为可能。本研究的目的是使用两种不同的数据采集系统:BIOPAC MP36 和 MyoWare 2.0,对手势控制手势和为这项研究专门记录的波兰手语手势进行分类。我们比较了各种机器学习算法的分类性能,特别强调了在代表 24 个手势的 EMG 信号数据集上的 CNN 的性能,这些信号是使用两种类型的 EMG 传感器记录的。结果(使用 BIOPAC MP36 和 MyoWare 记录的数据中,CNN 和其他分类器的准确率分别为 98.324%与≤7.8571%和 95.5307%与≤10.2697%)表明 CNN 具有更高的准确性。这些结果表明,使用成本更低的传感器进行有效的手势分类是可行的,并且将经济实惠的基于 EMG 的技术集成到更广泛的手势识别框架中也是可行的,为实际应用提供了一种具有成本效益的解决方案。研究过程中创建的数据集为基于 EMG 的波兰手语识别的未来研究提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6811/11511356/8bd7d35917e0/sensors-24-06710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验